10
25
(K10a
61
)
A knot diagram
1
Linearized knot diagam
6 8 7 10 1 3 4 2 5 9
Solving Sequence
4,8
7 3 2 9 6 1 5 10
c
7
c
3
c
2
c
8
c
6
c
1
c
5
c
10
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
32
+ u
31
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
32
+ u
31
+ · · · 2u 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
2
=
u
3
+ 2u
u
3
+ u
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
6
=
u
2
+ 1
u
4
2u
2
a
1
=
u
9
+ 4u
7
5u
5
+ 3u
u
11
5u
9
+ 8u
7
3u
5
3u
3
+ u
a
5
=
u
16
7u
14
+ 19u
12
22u
10
+ 3u
8
+ 14u
6
6u
4
4u
2
+ 1
u
18
+ 8u
16
25u
14
+ 36u
12
17u
10
12u
8
+ 12u
6
+ 2u
4
3u
2
a
10
=
u
23
10u
21
+ ··· 2u
3
+ 4u
u
23
9u
21
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
29
+ 48u
27
4u
26
252u
25
+ 44u
24
+ 740u
23
208u
22
1264u
21
+ 536u
20
+
1080u
19
768u
18
+ 64u
17
+ 480u
16
1008u
15
+ 176u
14
+ 612u
13
436u
12
+ 320u
11
+
120u
10
424u
9
+ 128u
8
4u
7
60u
6
+ 108u
5
12u
4
4u
3
+ 4u
2
12u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
32
u
31
+ ··· + 14u 5
c
2
, c
8
u
32
3u
31
+ ··· 4u
4
+ 1
c
3
, c
6
, c
7
u
32
+ u
31
+ ··· 2u 1
c
4
, c
9
u
32
+ u
31
+ ··· 2u 1
c
10
u
32
+ 17u
31
+ ··· 8u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
32
23y
31
+ ··· 296y + 25
c
2
, c
8
y
32
+ 17y
31
+ ··· 8y
2
+ 1
c
3
, c
6
, c
7
y
32
27y
31
+ ··· + 16y
2
+ 1
c
4
, c
9
y
32
+ 17y
31
+ ··· 8y
2
+ 1
c
10
y
32
3y
31
+ ··· 16y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.029010 + 0.281289I
3.89830 + 3.89503I 9.35061 2.90091I
u = 1.029010 0.281289I
3.89830 3.89503I 9.35061 + 2.90091I
u = 1.134230 + 0.236397I
1.32933 + 0.52783I 5.59448 0.64788I
u = 1.134230 0.236397I
1.32933 0.52783I 5.59448 + 0.64788I
u = 0.166316 + 0.775774I
1.27472 7.88151I 6.19556 + 6.68910I
u = 0.166316 0.775774I
1.27472 + 7.88151I 6.19556 6.68910I
u = 0.729645 + 0.240963I
4.28206 3.88889I 10.89128 + 4.90467I
u = 0.729645 0.240963I
4.28206 + 3.88889I 10.89128 4.90467I
u = 0.028912 + 0.764004I
4.01456 + 2.24194I 0.65690 3.79727I
u = 0.028912 0.764004I
4.01456 2.24194I 0.65690 + 3.79727I
u = 0.140851 + 0.748200I
1.56622 + 3.15266I 2.67728 3.41480I
u = 0.140851 0.748200I
1.56622 3.15266I 2.67728 + 3.41480I
u = 0.191682 + 0.700576I
2.34434 + 0.39737I 7.83598 + 0.58140I
u = 0.191682 0.700576I
2.34434 0.39737I 7.83598 0.58140I
u = 1.237710 + 0.313650I
0.29651 + 1.65231I 4.59303 0.15309I
u = 1.237710 0.313650I
0.29651 1.65231I 4.59303 + 0.15309I
u = 1.288430 + 0.161328I
5.00599 2.81562I 13.51638 + 3.82546I
u = 1.288430 0.161328I
5.00599 + 2.81562I 13.51638 3.82546I
u = 1.281200 + 0.325415I
0.06115 6.17510I 5.73067 + 6.90538I
u = 1.281200 0.325415I
0.06115 + 6.17510I 5.73067 6.90538I
u = 1.350330 + 0.317347I
3.13584 7.01747I 7.66223 + 4.88322I
u = 1.350330 0.317347I
3.13584 + 7.01747I 7.66223 4.88322I
u = 1.39424
7.31963 11.4830
u = 1.364340 + 0.293820I
7.25067 + 3.23058I 12.64791 1.85611I
u = 1.364340 0.293820I
7.25067 3.23058I 12.64791 + 1.85611I
u = 0.599844
1.22821 8.26170
u = 1.364190 + 0.328069I
6.10646 + 11.87580I 10.77954 7.99531I
u = 1.364190 0.328069I
6.10646 11.87580I 10.77954 + 7.99531I
u = 1.41547 + 0.02215I
10.82670 + 4.39858I 14.8085 3.5355I
u = 1.41547 0.02215I
10.82670 4.39858I 14.8085 + 3.5355I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.248101 + 0.323031I
0.501058 + 1.034980I 7.18759 6.41402I
u = 0.248101 0.323031I
0.501058 1.034980I 7.18759 + 6.41402I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
32
u
31
+ ··· + 14u 5
c
2
, c
8
u
32
3u
31
+ ··· 4u
4
+ 1
c
3
, c
6
, c
7
u
32
+ u
31
+ ··· 2u 1
c
4
, c
9
u
32
+ u
31
+ ··· 2u 1
c
10
u
32
+ 17u
31
+ ··· 8u
2
+ 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
32
23y
31
+ ··· 296y + 25
c
2
, c
8
y
32
+ 17y
31
+ ··· 8y
2
+ 1
c
3
, c
6
, c
7
y
32
27y
31
+ ··· + 16y
2
+ 1
c
4
, c
9
y
32
+ 17y
31
+ ··· 8y
2
+ 1
c
10
y
32
3y
31
+ ··· 16y + 1
8