12a
0306
(K12a
0306
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 7 2 1 12 11 4 9 5
Solving Sequence
4,11
10 5 9 12 1 8 3 2 7 6
c
10
c
4
c
9
c
11
c
12
c
8
c
3
c
1
c
7
c
6
c
2
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
66
u
65
+ ··· + 2u + 1i
I
u
2
= hu
7
+ u
5
+ 2u
3
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
66
u
65
+ · · · + 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
+ u
2
+ 1
u
4
a
1
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
10
2u
8
3u
6
4u
4
u
2
a
8
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
3
=
u
13
2u
11
5u
9
6u
7
6u
5
4u
3
u
u
13
+ u
11
+ 3u
9
+ 2u
7
+ 2u
5
+ u
3
+ u
a
2
=
u
36
+ 5u
34
+ ··· + u
2
+ 1
u
36
4u
34
+ ··· 12u
8
u
4
a
7
=
u
24
3u
22
+ ··· + 2u
2
+ 1
u
26
+ 4u
24
+ ··· + 3u
6
u
2
a
6
=
u
47
6u
45
+ ··· 4u
3
2u
u
49
+ 7u
47
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
64
4u
63
+ ··· + 8u
2
+ 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
66
+ 21u
65
+ ··· + 4u + 1
c
2
, c
6
u
66
u
65
+ ··· 2u + 1
c
3
, c
12
u
66
+ 6u
65
+ ··· + 1260u + 392
c
4
, c
10
u
66
u
65
+ ··· + 2u + 1
c
7
u
66
+ 5u
65
+ ··· 4u + 37
c
8
, c
9
, c
11
u
66
17u
65
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
66
+ 49y
65
+ ··· + 76y + 1
c
2
, c
6
y
66
+ 21y
65
+ ··· + 4y + 1
c
3
, c
12
y
66
42y
65
+ ··· + 3127376y + 153664
c
4
, c
10
y
66
+ 17y
65
+ ··· + 4y + 1
c
7
y
66
7y
65
+ ··· 10820y + 1369
c
8
, c
9
, c
11
y
66
+ 65y
65
+ ··· + 4y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.276142 + 0.973147I
4.50590 2.85550I 12.05805 + 4.41993I
u = 0.276142 0.973147I
4.50590 + 2.85550I 12.05805 4.41993I
u = 0.311087 + 0.967783I
1.20301 + 5.52787I 4.00000 8.08112I
u = 0.311087 0.967783I
1.20301 5.52787I 4.00000 + 8.08112I
u = 0.225553 + 0.996987I
7.62104 4.67869I 10.89032 + 2.00709I
u = 0.225553 0.996987I
7.62104 + 4.67869I 10.89032 2.00709I
u = 0.236153 + 0.997386I
8.32399 1.19963I 12.16015 + 3.25993I
u = 0.236153 0.997386I
8.32399 + 1.19963I 12.16015 3.25993I
u = 0.304523 + 1.001500I
7.92106 4.82325I 11.07978 + 4.36296I
u = 0.304523 1.001500I
7.92106 + 4.82325I 11.07978 4.36296I
u = 0.312943 + 1.002150I
7.10672 + 10.70210I 9.44810 9.41252I
u = 0.312943 1.002150I
7.10672 10.70210I 9.44810 + 9.41252I
u = 0.456777 + 0.785683I
1.23819 6.54922I 4.17677 + 9.67765I
u = 0.456777 0.785683I
1.23819 + 6.54922I 4.17677 9.67765I
u = 0.397793 + 0.800537I
1.82221 + 1.25981I 6.09781 4.41931I
u = 0.397793 0.800537I
1.82221 1.25981I 6.09781 + 4.41931I
u = 0.784027 + 0.781220I
1.10586 5.81643I 0
u = 0.784027 0.781220I
1.10586 + 5.81643I 0
u = 0.023490 + 0.865695I
3.89741 + 2.71211I 12.15997 3.32953I
u = 0.023490 0.865695I
3.89741 2.71211I 12.15997 + 3.32953I
u = 0.836827 + 0.807352I
2.60329 1.13595I 0
u = 0.836827 0.807352I
2.60329 + 1.13595I 0
u = 0.858606 + 0.795301I
0.37310 3.30299I 0
u = 0.858606 0.795301I
0.37310 + 3.30299I 0
u = 0.863434 + 0.797395I
0.53580 + 9.14737I 0
u = 0.863434 0.797395I
0.53580 9.14737I 0
u = 0.827585 + 0.837312I
4.93871 2.14028I 0
u = 0.827585 0.837312I
4.93871 + 2.14028I 0
u = 0.854921 + 0.812716I
6.26873 + 3.63660I 0
u = 0.854921 0.812716I
6.26873 3.63660I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.827211 + 0.875814I
5.15023 2.33627I 0
u = 0.827211 0.875814I
5.15023 + 2.33627I 0
u = 0.845186 + 0.880793I
6.18098 2.57775I 0
u = 0.845186 0.880793I
6.18098 + 2.57775I 0
u = 0.459757 + 0.623778I
3.05863 1.75367I 4.05356 + 5.04373I
u = 0.459757 0.623778I
3.05863 + 1.75367I 4.05356 5.04373I
u = 0.815789 + 0.918639I
5.01899 3.79645I 0
u = 0.815789 0.918639I
5.01899 + 3.79645I 0
u = 0.761181 + 0.966217I
2.20192 + 5.87663I 0
u = 0.761181 0.966217I
2.20192 5.87663I 0
u = 0.837522 + 0.902945I
9.94428 + 3.11601I 0
u = 0.837522 0.902945I
9.94428 3.11601I 0
u = 0.791445 + 0.947693I
4.59364 3.91730I 0
u = 0.791445 0.947693I
4.59364 + 3.91730I 0
u = 0.830031 + 0.923795I
6.04701 + 8.80946I 0
u = 0.830031 0.923795I
6.04701 8.80946I 0
u = 0.787054 + 0.967827I
2.10788 + 7.20390I 0
u = 0.787054 0.967827I
2.10788 7.20390I 0
u = 0.798774 + 0.972679I
5.77098 9.79547I 0
u = 0.798774 0.972679I
5.77098 + 9.79547I 0
u = 0.792645 + 0.983270I
0.95662 + 9.45046I 0
u = 0.792645 0.983270I
0.95662 9.45046I 0
u = 0.795929 + 0.984558I
0.0466 15.3200I 0
u = 0.795929 0.984558I
0.0466 + 15.3200I 0
u = 0.223454 + 0.622794I
0.329896 + 0.949161I 5.93547 7.10571I
u = 0.223454 0.622794I
0.329896 0.949161I 5.93547 + 7.10571I
u = 0.487684 + 0.434861I
0.22976 + 2.99529I 0.08554 2.50316I
u = 0.487684 0.434861I
0.22976 2.99529I 0.08554 + 2.50316I
u = 0.643478 + 0.086667I
4.24877 7.37536I 3.63430 + 5.60307I
u = 0.643478 0.086667I
4.24877 + 7.37536I 3.63430 5.60307I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.638810 + 0.068850I
5.02009 + 1.56359I 5.22655 0.46859I
u = 0.638810 0.068850I
5.02009 1.56359I 5.22655 + 0.46859I
u = 0.565065 + 0.112376I
1.37963 2.39285I 2.15770 + 3.99262I
u = 0.565065 0.112376I
1.37963 + 2.39285I 2.15770 3.99262I
u = 0.467047 + 0.336383I
0.51184 + 1.97273I 0.43404 3.18104I
u = 0.467047 0.336383I
0.51184 1.97273I 0.43404 + 3.18104I
7
II. I
u
2
= hu
7
+ u
5
+ 2u
3
+ u 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
+ u
2
+ 1
u
4
a
1
=
u
4
+ u
2
+ u + 1
u
4
u
3
u
a
8
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
3
=
u
6
u
4
2u
2
1
u
6
+ u
2
+ u
a
2
=
u
4
+ u
2
+ 1
u
6
2u
4
u
2
a
7
=
u
3
u
5
u
3
+ u
a
6
=
u
5
u
2u
3
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
7
+ 2u
6
+ 5u
5
+ 6u
4
+ 6u
3
+ 4u
2
+ u 1
c
2
, c
4
, c
6
c
10
u
7
+ u
5
+ 2u
3
+ u 1
c
3
, c
12
(u 1)
7
c
7
u
7
3u
5
2u
4
+ 8u
3
+ 2u
2
u 3
c
8
, c
9
, c
11
u
7
2u
6
+ 5u
5
6u
4
+ 6u
3
4u
2
+ u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
c
9
, c
11
y
7
+ 6y
6
+ 13y
5
+ 10y
4
+ 2y
3
+ 8y
2
+ 9y 1
c
2
, c
4
, c
6
c
10
y
7
+ 2y
6
+ 5y
5
+ 6y
4
+ 6y
3
+ 4y
2
+ y 1
c
3
, c
12
(y 1)
7
c
7
y
7
6y
6
+ 25y
5
54y
4
+ 78y
3
32y
2
+ 13y 9
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.237779 + 0.943997I
1.64493 6.00000
u = 0.237779 0.943997I
1.64493 6.00000
u = 0.799839 + 0.781167I
1.64493 6.00000
u = 0.799839 0.781167I
1.64493 6.00000
u = 0.755347 + 0.961681I
1.64493 6.00000
u = 0.755347 0.961681I
1.64493 6.00000
u = 0.564540
1.64493 6.00000
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
7
+ 2u
6
+ ··· + u 1)(u
66
+ 21u
65
+ ··· + 4u + 1)
c
2
, c
6
(u
7
+ u
5
+ 2u
3
+ u 1)(u
66
u
65
+ ··· 2u + 1)
c
3
, c
12
((u 1)
7
)(u
66
+ 6u
65
+ ··· + 1260u + 392)
c
4
, c
10
(u
7
+ u
5
+ 2u
3
+ u 1)(u
66
u
65
+ ··· + 2u + 1)
c
7
(u
7
3u
5
2u
4
+ 8u
3
+ 2u
2
u 3)(u
66
+ 5u
65
+ ··· 4u + 37)
c
8
, c
9
, c
11
(u
7
2u
6
+ ··· + u + 1)(u
66
17u
65
+ ··· 4u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
7
+ 6y
6
+ 13y
5
+ 10y
4
+ 2y
3
+ 8y
2
+ 9y 1)
· (y
66
+ 49y
65
+ ··· + 76y + 1)
c
2
, c
6
(y
7
+ 2y
6
+ ··· + y 1)(y
66
+ 21y
65
+ ··· + 4y + 1)
c
3
, c
12
((y 1)
7
)(y
66
42y
65
+ ··· + 3127376y + 153664)
c
4
, c
10
(y
7
+ 2y
6
+ ··· + y 1)(y
66
+ 17y
65
+ ··· + 4y + 1)
c
7
(y
7
6y
6
+ 25y
5
54y
4
+ 78y
3
32y
2
+ 13y 9)
· (y
66
7y
65
+ ··· 10820y + 1369)
c
8
, c
9
, c
11
(y
7
+ 6y
6
+ 13y
5
+ 10y
4
+ 2y
3
+ 8y
2
+ 9y 1)
· (y
66
+ 65y
65
+ ··· + 4y + 1)
13