12a
0318
(K12a
0318
)
A knot diagram
1
Linearized knot diagam
3 6 8 11 2 9 1 5 7 12 4 10
Solving Sequence
6,9
7
3,10
2 1 5 8 4 12 11
c
6
c
9
c
2
c
1
c
5
c
8
c
3
c
12
c
11
c
4
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.25817 × 10
400
u
103
+ 6.06573 × 10
400
u
102
+ ··· + 2.71520 × 10
400
b 4.51803 × 10
402
,
3.84894 × 10
400
u
103
1.79264 × 10
401
u
102
+ ··· + 3.39400 × 10
400
a + 2.41261 × 10
403
,
u
104
6u
103
+ ··· 8175u 625i
I
u
2
= h25a
4
5a
3
+ 2a
2
+ 4b + 11a + 3, 25a
5
5a
4
+ 2a
3
+ 6a
2
+ 5a 1, u + 1i
* 2 irreducible components of dim
C
= 0, with total 109 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.26 × 10
400
u
103
+ 6.07 × 10
400
u
102
+ · · · + 2.72 × 10
400
b 4.52 ×
10
402
, 3.85 × 10
400
u
103
1.79 × 10
401
u
102
+ · · · + 3.39 × 10
400
a + 2.41 ×
10
403
, u
104
6u
103
+ · · · 8175u 625i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
3
=
1.13404u
103
+ 5.28179u
102
+ ··· 8692.58u 710.844
0.463381u
103
2.23399u
102
+ ··· + 2498.84u + 166.397
a
10
=
u
u
3
+ u
a
2
=
0.670662u
103
+ 3.04780u
102
+ ··· 6193.74u 544.447
0.463381u
103
2.23399u
102
+ ··· + 2498.84u + 166.397
a
1
=
1.07459u
103
5.59952u
102
+ ··· 3167.52u 538.320
1.25102u
103
+ 5.81009u
102
+ ··· 8824.16u 651.600
a
5
=
0.714651u
103
3.81450u
102
+ ··· 3127.85u 359.311
1.30915u
103
+ 6.22051u
102
+ ··· 7633.41u 537.319
a
8
=
0.384925u
103
+ 2.58489u
102
+ ··· + 15388.0u + 1690.93
0.867986u
103
+ 3.89150u
102
+ ··· 6473.36u 445.958
a
4
=
0.591519u
103
+ 2.65264u
102
+ ··· 7469.87u 752.274
0.496111u
103
+ 2.31885u
102
+ ··· 3046.93u 227.266
a
12
=
0.349150u
103
+ 1.07505u
102
+ ··· 11968.9u 1158.87
0.178604u
103
+ 0.831504u
102
+ ··· 1466.07u 104.748
a
11
=
1.68396u
103
9.20013u
102
+ ··· 12447.3u 1482.86
0.498847u
103
+ 2.24348u
102
+ ··· 4062.81u 346.564
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.235557u
103
+ 1.17647u
102
+ ··· + 281.718u 57.7009
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
104
+ 42u
103
+ ··· + 5u + 1
c
2
, c
5
u
104
+ 2u
103
+ ··· + u 1
c
3
u
104
+ u
103
+ ··· + 128000u + 20000
c
4
, c
11
u
104
2u
103
+ ··· + 3u 1
c
6
, c
9
u
104
+ 6u
103
+ ··· + 8175u 625
c
7
25(25u
104
+ 125u
103
+ ··· 5.04359 × 10
7
u 1.75923 × 10
8
)
c
8
25(25u
104
+ 50u
103
+ ··· + 4032879u + 1554593)
c
10
, c
12
u
104
+ 30u
103
+ ··· 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
104
+ 42y
103
+ ··· + 83y + 1
c
2
, c
5
y
104
42y
103
+ ··· 5y + 1
c
3
y
104
33y
103
+ ··· 16280000000y + 400000000
c
4
, c
11
y
104
+ 30y
103
+ ··· 5y + 1
c
6
, c
9
y
104
86y
103
+ ··· 30394375y + 390625
c
7
625(625y
104
87275y
103
+ ··· 7.63958 × 10
17
y + 3.09488 × 10
16
)
c
8
625
· (625y
104
+ 16400y
103
+ ··· 21479676158875y + 2416759395649)
c
10
, c
12
y
104
+ 90y
103
+ ··· 173y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.013930 + 0.053074I
a = 0.84563 + 5.97337I
b = 0.875152 0.542840I
0.55238 2.15431I 0
u = 1.013930 0.053074I
a = 0.84563 5.97337I
b = 0.875152 + 0.542840I
0.55238 + 2.15431I 0
u = 1.034930 + 0.092377I
a = 0.432529 0.375380I
b = 1.43461 + 0.15241I
4.20552 + 4.60588I 0
u = 1.034930 0.092377I
a = 0.432529 + 0.375380I
b = 1.43461 0.15241I
4.20552 4.60588I 0
u = 0.920741 + 0.125206I
a = 1.26152 3.17105I
b = 0.819156 0.413304I
4.48936 + 0.62293I 0
u = 0.920741 0.125206I
a = 1.26152 + 3.17105I
b = 0.819156 + 0.413304I
4.48936 0.62293I 0
u = 0.025348 + 1.078690I
a = 0.414738 0.689098I
b = 1.022060 + 0.609154I
2.41249 7.33475I 0
u = 0.025348 1.078690I
a = 0.414738 + 0.689098I
b = 1.022060 0.609154I
2.41249 + 7.33475I 0
u = 1.070450 + 0.147466I
a = 0.076939 0.239125I
b = 0.140596 0.243052I
1.177780 0.779255I 0
u = 1.070450 0.147466I
a = 0.076939 + 0.239125I
b = 0.140596 + 0.243052I
1.177780 + 0.779255I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.110220 + 0.892342I
a = 0.914702 1.076450I
b = 1.003870 + 0.038005I
0.18628 5.77200I 0
u = 0.110220 0.892342I
a = 0.914702 + 1.076450I
b = 1.003870 0.038005I
0.18628 + 5.77200I 0
u = 0.867570 + 0.211578I
a = 1.23556 + 2.33717I
b = 0.801312 + 0.374759I
4.32881 5.13184I 0
u = 0.867570 0.211578I
a = 1.23556 2.33717I
b = 0.801312 0.374759I
4.32881 + 5.13184I 0
u = 0.716194 + 0.516260I
a = 0.058650 0.780537I
b = 0.439288 0.400367I
4.70460 + 0.58481I 0
u = 0.716194 0.516260I
a = 0.058650 + 0.780537I
b = 0.439288 + 0.400367I
4.70460 0.58481I 0
u = 0.134970 + 0.860713I
a = 0.305814 + 0.661002I
b = 0.532236 0.624590I
1.02515 2.43506I 0
u = 0.134970 0.860713I
a = 0.305814 0.661002I
b = 0.532236 + 0.624590I
1.02515 + 2.43506I 0
u = 0.755968 + 0.378816I
a = 0.009408 0.920023I
b = 1.187370 + 0.198303I
4.14345 + 4.96463I 0
u = 0.755968 0.378816I
a = 0.009408 + 0.920023I
b = 1.187370 0.198303I
4.14345 4.96463I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.15916
a = 0.248154
b = 1.39516
0.196484 0
u = 0.234959 + 0.795544I
a = 0.790804 + 0.597039I
b = 0.992648 0.590040I
0.32570 4.74919I 0
u = 0.234959 0.795544I
a = 0.790804 0.597039I
b = 0.992648 + 0.590040I
0.32570 + 4.74919I 0
u = 0.031293 + 0.813655I
a = 0.98332 + 1.14454I
b = 0.973040 0.042367I
0.753256 + 0.017776I 0
u = 0.031293 0.813655I
a = 0.98332 1.14454I
b = 0.973040 + 0.042367I
0.753256 0.017776I 0
u = 0.400031 + 0.699404I
a = 0.568973 1.153310I
b = 1.058270 + 0.115697I
5.49838 1.03204I 0
u = 0.400031 0.699404I
a = 0.568973 + 1.153310I
b = 1.058270 0.115697I
5.49838 + 1.03204I 0
u = 0.608735 + 0.525411I
a = 0.166435 + 0.966502I
b = 0.490251 + 0.429515I
4.41771 5.22605I 0
u = 0.608735 0.525411I
a = 0.166435 0.966502I
b = 0.490251 0.429515I
4.41771 + 5.22605I 0
u = 0.517612 + 0.557275I
a = 0.267475 0.044433I
b = 0.631086 + 0.547783I
1.42679 0.09115I 8.32769 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.517612 0.557275I
a = 0.267475 + 0.044433I
b = 0.631086 0.547783I
1.42679 + 0.09115I 8.32769 + 0.I
u = 1.249050 + 0.091321I
a = 0.63785 1.27059I
b = 0.541821 + 1.005770I
3.02371 1.07462I 0
u = 1.249050 0.091321I
a = 0.63785 + 1.27059I
b = 0.541821 1.005770I
3.02371 + 1.07462I 0
u = 1.230010 + 0.257322I
a = 0.18469 + 1.76690I
b = 1.122190 0.745710I
1.24341 + 5.25068I 0
u = 1.230010 0.257322I
a = 0.18469 1.76690I
b = 1.122190 + 0.745710I
1.24341 5.25068I 0
u = 0.714203
a = 0.630403
b = 0.398199
1.03446 10.5160
u = 0.501535 + 1.223320I
a = 0.021136 0.607600I
b = 0.613344 + 0.675383I
5.49142 0.54714I 0
u = 0.501535 1.223320I
a = 0.021136 + 0.607600I
b = 0.613344 0.675383I
5.49142 + 0.54714I 0
u = 0.391187 + 1.267150I
a = 0.044961 + 0.643911I
b = 0.598753 0.683955I
5.05098 6.49860I 0
u = 0.391187 1.267150I
a = 0.044961 0.643911I
b = 0.598753 + 0.683955I
5.05098 + 6.49860I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.327230 + 0.025075I
a = 0.20990 1.43950I
b = 1.169970 + 0.711145I
8.34639 + 1.35481I 0
u = 1.327230 0.025075I
a = 0.20990 + 1.43950I
b = 1.169970 0.711145I
8.34639 1.35481I 0
u = 1.299360 + 0.322093I
a = 0.106462 + 0.307157I
b = 1.284080 0.060470I
4.83167 + 3.98855I 0
u = 1.299360 0.322093I
a = 0.106462 0.307157I
b = 1.284080 + 0.060470I
4.83167 3.98855I 0
u = 1.157470 + 0.677359I
a = 0.43424 + 1.62457I
b = 0.918558 0.625354I
2.25024 5.42318I 0
u = 1.157470 0.677359I
a = 0.43424 1.62457I
b = 0.918558 + 0.625354I
2.25024 + 5.42318I 0
u = 1.247090 + 0.519183I
a = 0.653265 0.592996I
b = 0.753696 + 0.620768I
2.75612 0.51612I 0
u = 1.247090 0.519183I
a = 0.653265 + 0.592996I
b = 0.753696 0.620768I
2.75612 + 0.51612I 0
u = 1.293830 + 0.393590I
a = 0.149281 0.351146I
b = 1.270650 + 0.063796I
4.02286 + 10.36490I 0
u = 1.293830 0.393590I
a = 0.149281 + 0.351146I
b = 1.270650 0.063796I
4.02286 10.36490I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.366010 + 0.033928I
a = 0.001319 0.235797I
b = 0.015035 0.391381I
6.33487 2.95650I 0
u = 1.366010 0.033928I
a = 0.001319 + 0.235797I
b = 0.015035 + 0.391381I
6.33487 + 2.95650I 0
u = 0.532280 + 0.337940I
a = 1.072810 + 0.907460I
b = 0.641319 + 0.116720I
0.95235 1.78350I 2.07327 + 5.75596I
u = 0.532280 0.337940I
a = 1.072810 0.907460I
b = 0.641319 0.116720I
0.95235 + 1.78350I 2.07327 5.75596I
u = 1.325390 + 0.351138I
a = 0.775024 1.068110I
b = 0.561537 + 0.938182I
3.49061 + 6.69572I 0
u = 1.325390 0.351138I
a = 0.775024 + 1.068110I
b = 0.561537 0.938182I
3.49061 6.69572I 0
u = 1.373980 + 0.047061I
a = 0.15734 1.49974I
b = 1.155940 + 0.715392I
9.36202 + 5.02654I 0
u = 1.373980 0.047061I
a = 0.15734 + 1.49974I
b = 1.155940 0.715392I
9.36202 5.02654I 0
u = 1.380450 + 0.205876I
a = 0.668151 + 1.119090I
b = 0.541182 0.958954I
7.11860 + 2.72109I 0
u = 1.380450 0.205876I
a = 0.668151 1.119090I
b = 0.541182 + 0.958954I
7.11860 2.72109I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.399670 + 0.162927I
a = 0.419135 + 1.168260I
b = 0.473091 0.966081I
10.46890 + 7.48108I 0
u = 1.399670 0.162927I
a = 0.419135 1.168260I
b = 0.473091 + 0.966081I
10.46890 7.48108I 0
u = 1.386420 + 0.266585I
a = 0.25593 1.81404I
b = 0.869849 + 0.621736I
3.35689 2.65952I 0
u = 1.386420 0.266585I
a = 0.25593 + 1.81404I
b = 0.869849 0.621736I
3.35689 + 2.65952I 0
u = 1.37389 + 0.33988I
a = 0.02125 1.72170I
b = 1.118940 + 0.720663I
5.34196 + 8.84585I 0
u = 1.37389 0.33988I
a = 0.02125 + 1.72170I
b = 1.118940 0.720663I
5.34196 8.84585I 0
u = 0.28820 + 1.38713I
a = 0.446882 + 0.904495I
b = 1.003300 0.636591I
4.34614 5.65703I 0
u = 0.28820 1.38713I
a = 0.446882 0.904495I
b = 1.003300 + 0.636591I
4.34614 + 5.65703I 0
u = 1.34330 + 0.47281I
a = 0.05769 + 1.81023I
b = 1.105550 0.715397I
1.81081 + 12.75050I 0
u = 1.34330 0.47281I
a = 0.05769 1.81023I
b = 1.105550 + 0.715397I
1.81081 12.75050I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43078 + 0.09268I
a = 0.463511 1.152510I
b = 0.487227 + 0.966447I
11.40100 + 1.10913I 0
u = 1.43078 0.09268I
a = 0.463511 + 1.152510I
b = 0.487227 0.966447I
11.40100 1.10913I 0
u = 0.18781 + 1.43114I
a = 0.413662 0.884510I
b = 1.010510 + 0.637829I
3.84645 11.63360I 0
u = 0.18781 1.43114I
a = 0.413662 + 0.884510I
b = 1.010510 0.637829I
3.84645 + 11.63360I 0
u = 1.44555 + 0.08629I
a = 0.74940 + 1.33777I
b = 0.823412 0.622826I
3.50118 + 2.22683I 0
u = 1.44555 0.08629I
a = 0.74940 1.33777I
b = 0.823412 + 0.622826I
3.50118 2.22683I 0
u = 0.190949 + 0.516496I
a = 0.0145879 0.0144478I
b = 1.031680 + 0.541785I
2.05610 2.20533I 3.33452 0.09970I
u = 0.190949 0.516496I
a = 0.0145879 + 0.0144478I
b = 1.031680 0.541785I
2.05610 + 2.20533I 3.33452 + 0.09970I
u = 0.345318 + 0.335466I
a = 0.12836 + 1.71447I
b = 1.029410 0.244500I
1.96391 + 1.11544I 1.55787 1.47213I
u = 0.345318 0.335466I
a = 0.12836 1.71447I
b = 1.029410 + 0.244500I
1.96391 1.11544I 1.55787 + 1.47213I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.370544 + 0.231620I
a = 0.30459 + 1.57062I
b = 0.178701 0.619565I
0.02077 + 2.00050I 0.12885 4.33329I
u = 0.370544 0.231620I
a = 0.30459 1.57062I
b = 0.178701 + 0.619565I
0.02077 2.00050I 0.12885 + 4.33329I
u = 1.51573 + 0.42036I
a = 0.698231 + 0.961625I
b = 0.536978 0.923935I
11.80750 + 6.14222I 0
u = 1.51573 0.42036I
a = 0.698231 0.961625I
b = 0.536978 + 0.923935I
11.80750 6.14222I 0
u = 1.50371 + 0.47064I
a = 0.717795 0.941657I
b = 0.538804 + 0.918861I
10.9616 + 12.4442I 0
u = 1.50371 0.47064I
a = 0.717795 + 0.941657I
b = 0.538804 0.918861I
10.9616 12.4442I 0
u = 0.422179 + 0.033106I
a = 4.10481 1.84710I
b = 0.946056 + 0.550739I
3.70136 + 4.72366I 5.70262 6.08247I
u = 0.422179 0.033106I
a = 4.10481 + 1.84710I
b = 0.946056 0.550739I
3.70136 4.72366I 5.70262 + 6.08247I
u = 1.51283 + 0.51617I
a = 0.14872 1.71406I
b = 1.112300 + 0.702932I
10.0427 + 12.1163I 0
u = 1.51283 0.51617I
a = 0.14872 + 1.71406I
b = 1.112300 0.702932I
10.0427 12.1163I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50426 + 0.56043I
a = 0.17208 + 1.73252I
b = 1.109870 0.701364I
9.2104 + 18.3996I 0
u = 1.50426 0.56043I
a = 0.17208 1.73252I
b = 1.109870 + 0.701364I
9.2104 18.3996I 0
u = 0.275966 + 0.081922I
a = 5.36153 + 2.17952I
b = 0.942019 0.553208I
3.44019 0.96910I 4.29951 0.42121I
u = 0.275966 0.081922I
a = 5.36153 2.17952I
b = 0.942019 + 0.553208I
3.44019 + 0.96910I 4.29951 + 0.42121I
u = 0.258260 + 0.055783I
a = 2.30549 2.00942I
b = 0.703307 0.430355I
0.81820 + 1.73592I 0.97741 5.34079I
u = 0.258260 0.055783I
a = 2.30549 + 2.00942I
b = 0.703307 + 0.430355I
0.81820 1.73592I 0.97741 + 5.34079I
u = 1.67498 + 0.83826I
a = 0.128673 + 1.344690I
b = 0.905498 0.666581I
8.57816 8.03076I 0
u = 1.67498 0.83826I
a = 0.128673 1.344690I
b = 0.905498 + 0.666581I
8.57816 + 8.03076I 0
u = 1.78021 + 0.60840I
a = 0.370721 0.903073I
b = 0.781342 + 0.678105I
8.95454 2.83317I 0
u = 1.78021 0.60840I
a = 0.370721 + 0.903073I
b = 0.781342 0.678105I
8.95454 + 2.83317I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72719 + 0.74945I
a = 0.080288 1.352320I
b = 0.898221 + 0.667170I
8.74433 1.97763I 0
u = 1.72719 0.74945I
a = 0.080288 + 1.352320I
b = 0.898221 0.667170I
8.74433 + 1.97763I 0
u = 1.82306 + 0.51731I
a = 0.372352 + 0.949139I
b = 0.790607 0.677284I
9.07102 + 3.21849I 0
u = 1.82306 0.51731I
a = 0.372352 0.949139I
b = 0.790607 + 0.677284I
9.07102 3.21849I 0
15
II.
I
u
2
= h25a
4
5a
3
+ 2a
2
+ 4b + 11a + 3, 25a
5
5a
4
+ 2a
3
+ 6a
2
+ 5a 1, u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
1
a
7
=
1
1
a
3
=
a
25
4
a
4
+
5
4
a
3
+ ···
11
4
a
3
4
a
10
=
1
0
a
2
=
25
4
a
4
+
5
4
a
3
+ ···
7
4
a
3
4
25
4
a
4
+
5
4
a
3
+ ···
11
4
a
3
4
a
1
=
125
16
a
4
+
5
8
a
2
3a
13
16
75
16
a
4
+
5
8
a
3
+ ··· +
15
8
a +
5
16
a
5
=
25
16
a
4
5
4
a
3
+ ··· +
1
4
a
5
16
25
16
a
4
5
4
a
3
+ ··· +
3
4
a
25
16
a
8
=
25
16
a
4
5
8
a
3
+
1
8
a +
1
16
1
2
a
1
2
a
4
=
a
25
4
a
4
+
5
4
a
3
+ ···
11
4
a
3
4
a
12
=
25
8
a
4
+
5
8
a
3
+ ···
9
8
a
1
2
75
16
a
4
+
5
8
a
3
+ ··· +
15
8
a +
5
16
a
11
=
1
2
a
1
2
25
8
a
4
+
15
4
a
3
+ ··· +
3
4
a
3
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
525
16
a
4
+
105
4
a
3
139
8
a
2
+
27
4
a
13
16
16
(iv) u-Polynomials at the component
17
Crossings u-Polynomials at each crossing
c
1
u
5
5u
4
+ 8u
3
3u
2
u 1
c
2
u
5
+ u
4
2u
3
u
2
+ u 1
c
3
u
5
c
4
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
5
u
5
u
4
2u
3
+ u
2
+ u + 1
c
6
(u + 1)
5
c
7
25(25u
5
3u
3
+ 2u
2
2u + 1)
c
8
25(25u
5
25u
4
17u
3
+ 10u
2
+ 7u + 1)
c
9
(u 1)
5
c
10
u
5
3u
4
+ 4u
3
u
2
u + 1
c
11
u
5
u
4
+ 2u
3
u
2
+ u 1
c
12
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
18
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
2
, c
5
y
5
5y
4
+ 8y
3
3y
2
y 1
c
3
y
5
c
4
, c
11
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
6
, c
9
(y 1)
5
c
7
625(625y
5
150y
4
91y
3
+ 8y
2
1)
c
8
625(625y
5
1475y
4
+ 1139y
3
288y
2
+ 29y 1)
c
10
, c
12
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.495386 + 0.635674I
b = 0.309916 0.549911I
1.31583 1.53058I 4.90490 + 5.44833I
u = 1.00000
a = 0.495386 0.635674I
b = 0.309916 + 0.549911I
1.31583 + 1.53058I 4.90490 5.44833I
u = 1.00000
a = 0.478118 + 0.378961I
b = 1.41878 0.21917I
4.22763 + 4.40083I 1.0936 + 16.2687I
u = 1.00000
a = 0.478118 0.378961I
b = 1.41878 + 0.21917I
4.22763 4.40083I 1.0936 16.2687I
u = 1.00000
a = 0.165464
b = 1.21774
0.756147 0.0769970
21
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
5u
4
+ 8u
3
3u
2
u 1)(u
104
+ 42u
103
+ ··· + 5u + 1)
c
2
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
104
+ 2u
103
+ ··· + u 1)
c
3
u
5
(u
104
+ u
103
+ ··· + 128000u + 20000)
c
4
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
104
2u
103
+ ··· + 3u 1)
c
5
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
104
+ 2u
103
+ ··· + u 1)
c
6
((u + 1)
5
)(u
104
+ 6u
103
+ ··· + 8175u 625)
c
7
625(25u
5
3u
3
+ 2u
2
2u + 1)
· (25u
104
+ 125u
103
+ ··· 50435872u 175922653)
c
8
625(25u
5
25u
4
17u
3
+ 10u
2
+ 7u + 1)
· (25u
104
+ 50u
103
+ ··· + 4032879u + 1554593)
c
9
((u 1)
5
)(u
104
+ 6u
103
+ ··· + 8175u 625)
c
10
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
104
+ 30u
103
+ ··· 5u + 1)
c
11
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
104
2u
103
+ ··· + 3u 1)
c
12
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)(u
104
+ 30u
103
+ ··· 5u + 1)
22
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
5
9y
4
+ 32y
3
35y
2
5y 1)(y
104
+ 42y
103
+ ··· + 83y + 1)
c
2
, c
5
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
104
42y
103
+ ··· 5y + 1)
c
3
y
5
(y
104
33y
103
+ ··· 1.62800 × 10
10
y + 4.00000 × 10
8
)
c
4
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
104
+ 30y
103
+ ··· 5y + 1)
c
6
, c
9
((y 1)
5
)(y
104
86y
103
+ ··· 3.03944 × 10
7
y + 390625)
c
7
390625(625y
5
150y
4
91y
3
+ 8y
2
1)
· (625y
104
8.73 × 10
4
y
103
+ ··· 7.64 × 10
17
y + 3.09 × 10
16
)
c
8
390625(625y
5
1475y
4
+ 1139y
3
288y
2
+ 29y 1)
· (625y
104
+ 16400y
103
+ ··· 21479676158875y + 2416759395649)
c
10
, c
12
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
104
+ 90y
103
+ ··· 173y + 1)
23