10
27
(K10a
58
)
A knot diagram
1
Linearized knot diagam
6 10 9 8 7 2 1 3 4 5
Solving Sequence
1,6
2 7 8 5 4 10 3 9
c
1
c
6
c
7
c
5
c
4
c
10
c
2
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
35
u
34
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
35
u
34
+ · · · + 2u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
8
=
u
3
u
3
+ u
a
5
=
u
3
u
5
u
3
+ u
a
4
=
u
11
+ 2u
9
2u
7
+ u
3
u
11
+ 3u
9
4u
7
+ 3u
5
u
3
+ u
a
10
=
u
8
u
6
+ u
4
+ 1
u
10
2u
8
+ 3u
6
2u
4
+ u
2
a
3
=
u
16
3u
14
+ 5u
12
4u
10
+ 3u
8
2u
6
+ 2u
4
+ 1
u
18
4u
16
+ 9u
14
12u
12
+ 11u
10
6u
8
+ 2u
6
+ u
2
a
9
=
u
32
+ 7u
30
+ ··· + 2u
4
+ 1
u
32
+ 8u
30
+ ··· 4u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
33
+ 32u
31
4u
30
132u
29
+ 28u
28
+ 348u
27
100u
26
644u
25
+ 224u
24
+ 868u
23
344u
22
880u
21
+376u
20
+700u
19
312u
18
488u
17
+228u
16
+336u
15
180u
14
232u
13
+
140u
12
+ 136u
11
88u
10
72u
9
+ 44u
8
+ 32u
7
24u
6
16u
5
+ 16u
4
+ 4u
3
8u
2
+ 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
35
u
34
+ ··· + 2u 1
c
2
, c
4
u
35
+ 3u
34
+ ··· + 14u + 5
c
3
, c
8
, c
9
u
35
u
34
+ ··· + u
2
1
c
5
u
35
+ 17u
34
+ ··· + 2u + 1
c
7
u
35
3u
34
+ ··· + 58u 7
c
10
u
35
+ u
34
+ ··· 8u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
35
17y
34
+ ··· + 2y 1
c
2
, c
4
y
35
+ 23y
34
+ ··· + 166y 25
c
3
, c
8
, c
9
y
35
29y
34
+ ··· + 2y 1
c
5
y
35
+ 3y
34
+ ··· 14y 1
c
7
y
35
+ 11y
34
+ ··· + 1446y 49
c
10
y
35
y
34
+ ··· + 34y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.890522 + 0.542191I
3.03937 + 0.83862I 7.46140 + 0.32367I
u = 0.890522 0.542191I
3.03937 0.83862I 7.46140 0.32367I
u = 0.996188 + 0.423828I
1.53766 + 1.71623I 0.733091 + 0.125972I
u = 0.996188 0.423828I
1.53766 1.71623I 0.733091 0.125972I
u = 0.665614 + 0.623440I
3.70229 5.45820I 8.60996 + 5.96309I
u = 0.665614 0.623440I
3.70229 + 5.45820I 8.60996 5.96309I
u = 0.903342
2.34444 4.14110
u = 0.688085 + 0.531421I
0.78083 + 2.01862I 2.90867 4.63726I
u = 0.688085 0.531421I
0.78083 2.01862I 2.90867 + 4.63726I
u = 1.059800 + 0.502369I
0.80902 4.67146I 3.48727 + 7.37463I
u = 1.059800 0.502369I
0.80902 + 4.67146I 3.48727 7.37463I
u = 1.146120 + 0.254789I
2.52028 4.45397I 0.84761 + 2.81525I
u = 1.146120 0.254789I
2.52028 + 4.45397I 0.84761 2.81525I
u = 0.308085 + 0.766136I
1.96589 + 7.38977I 7.01566 5.00078I
u = 0.308085 0.766136I
1.96589 7.38977I 7.01566 + 5.00078I
u = 1.142990 + 0.287310I
6.81373 + 0.30557I 3.68573 0.05854I
u = 1.142990 0.287310I
6.81373 0.30557I 3.68573 + 0.05854I
u = 0.460984 + 0.678579I
6.79721 1.04155I 11.85373 + 0.57295I
u = 0.460984 0.678579I
6.79721 + 1.04155I 11.85373 0.57295I
u = 1.141570 + 0.325389I
3.32477 + 3.85709I 0.01107 3.91391I
u = 1.141570 0.325389I
3.32477 3.85709I 0.01107 + 3.91391I
u = 1.053770 + 0.564883I
5.05997 + 5.85664I 8.52563 5.76903I
u = 1.053770 0.564883I
5.05997 5.85664I 8.52563 + 5.76903I
u = 0.276974 + 0.740238I
2.57455 3.36312I 2.16603 + 3.13288I
u = 0.276974 0.740238I
2.57455 + 3.36312I 2.16603 3.13288I
u = 1.131430 + 0.520956I
2.00084 4.02658I 1.98982 + 2.90516I
u = 1.131430 0.520956I
2.00084 + 4.02658I 1.98982 2.90516I
u = 1.134810 + 0.545503I
5.06633 + 8.22097I 0.85255 6.68822I
u = 1.134810 0.545503I
5.06633 8.22097I 0.85255 + 6.68822I
u = 1.134940 + 0.561389I
0.46048 12.38410I 3.84214 + 8.57579I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.134940 0.561389I
0.46048 + 12.38410I 3.84214 8.57579I
u = 0.217277 + 0.699987I
0.592334 0.599446I 5.29885 + 0.74081I
u = 0.217277 0.699987I
0.592334 + 0.599446I 5.29885 0.74081I
u = 0.396163 + 0.521609I
1.091810 + 0.446317I 8.73891 2.08073I
u = 0.396163 0.521609I
1.091810 0.446317I 8.73891 + 2.08073I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
35
u
34
+ ··· + 2u 1
c
2
, c
4
u
35
+ 3u
34
+ ··· + 14u + 5
c
3
, c
8
, c
9
u
35
u
34
+ ··· + u
2
1
c
5
u
35
+ 17u
34
+ ··· + 2u + 1
c
7
u
35
3u
34
+ ··· + 58u 7
c
10
u
35
+ u
34
+ ··· 8u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
35
17y
34
+ ··· + 2y 1
c
2
, c
4
y
35
+ 23y
34
+ ··· + 166y 25
c
3
, c
8
, c
9
y
35
29y
34
+ ··· + 2y 1
c
5
y
35
+ 3y
34
+ ··· 14y 1
c
7
y
35
+ 11y
34
+ ··· + 1446y 49
c
10
y
35
y
34
+ ··· + 34y 1
8