12a
0327
(K12a
0327
)
A knot diagram
1
Linearized knot diagam
3 6 8 11 2 1 9 4 7 12 5 10
Solving Sequence
4,9
8
1,3
2 7 10 6 5 12 11
c
8
c
3
c
1
c
7
c
9
c
6
c
5
c
12
c
10
c
2
, c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
23
u
22
+ ··· + 4b + 1, u
6
+ u
4
2u
2
+ a + 1, u
24
u
23
+ ··· 3u
2
+ 1i
I
u
2
= h−1.28182 × 10
16
u
51
5.11407 × 10
16
u
50
+ ··· + 3.64498 × 10
17
b + 4.59559 × 10
17
,
2.08375 × 10
17
u
51
4.62594 × 10
17
u
50
+ ··· + 7.28997 × 10
17
a + 2.74422 × 10
18
, u
52
2u
51
+ ··· + 20u + 4i
I
u
3
= hu
3
+ u
2
+ b, u
2
+ a + 1, u
4
u
2
+ 1i
I
u
4
= hb u, a, u
12
u
11
2u
10
+ 3u
9
+ 2u
8
5u
7
+ u
6
+ 3u
5
2u
4
+ 2u
2
2u + 1i
I
u
5
= ha
3
u
2
+ 8a
3
u + 5a
2
u
2
+ 10a
3
+ 17a
2
u 57u
2
a + 27a
2
42au 60u
2
+ 46b + 5a 43u 48,
a
4
2a
3
u 2a
2
u
2
a
2
u 6u
2
a a
2
+ 3u
2
+ 6a + 4u 1, u
3
+ u
2
1i
I
u
6
= hb u, a, u
3
+ u
2
1i
I
u
7
= h−u
2
+ b u + 1, a 1, u
4
u
2
+ 1i
I
u
8
= hu
2
+ b u, u
2
+ a + 1, u
4
u
2
+ 1i
I
u
9
= hu
3
u
2
+ b + 1, a 1, u
4
u
2
+ 1i
* 9 irreducible components of dim
C
= 0, with total 119 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
23
u
22
+· · ·+4b+1, u
6
+u
4
2u
2
+a+1, u
24
u
23
+· · ·3u
2
+1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
u
6
u
4
+ 2u
2
1
1
4
u
23
+
1
4
u
22
+ ··· + 2u
2
1
4
a
3
=
u
u
3
+ u
a
2
=
1
4
u
23
+ u
21
+ ··· +
1
4
u
1
2
1
2
u
23
+
1
2
u
22
+ ··· + 2u
2
1
2
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
u
2
+ 1
u
4
a
6
=
1
4
u
23
u
21
+ ···
1
4
u +
1
2
1
4
u
22
1
2
u
21
+ ···
1
4
u
3
4
a
5
=
u
1
4
u
23
+
1
4
u
22
+ ··· +
3
2
u +
1
4
a
12
=
u
2
1
1
4
u
23
+
1
4
u
22
+ ··· + 2u
2
1
4
a
11
=
1
1
4
u
23
+ u
21
+ ··· +
1
4
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
23
5
2
u
22
+ 6u
20
u
19
21u
18
+ 19u
17
+ 29u
16
95
2
u
15
43u
14
+
193
2
u
13
+ 31u
12
295
2
u
11
3u
10
+ 161u
9
35
2
u
8
311
2
u
7
+
95
2
u
6
+ 95u
5
61
2
u
4
36u
3
+
7
2
u
2
+
23
2
u +
15
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 12u
23
+ ··· + 56u + 16
c
2
, c
5
u
24
+ 4u
23
+ ··· + 12u + 4
c
3
, c
4
, c
8
c
11
u
24
u
23
+ ··· 3u
2
+ 1
c
6
u
24
+ 12u
23
+ ··· + 876u + 188
c
7
, c
9
, c
10
c
12
u
24
7u
23
+ ··· 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 24y
22
+ ··· + 1760y + 256
c
2
, c
5
y
24
12y
23
+ ··· 56y + 16
c
3
, c
4
, c
8
c
11
y
24
7y
23
+ ··· 6y + 1
c
6
y
24
+ 12y
23
+ ··· 37560y + 35344
c
7
, c
9
, c
10
c
12
y
24
+ 25y
23
+ ··· + 6y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.997654 + 0.063385I
a = 0.942467 0.373018I
b = 0.114843 + 0.496939I
5.25543 0.92360I 15.9667 + 0.9405I
u = 0.997654 0.063385I
a = 0.942467 + 0.373018I
b = 0.114843 0.496939I
5.25543 + 0.92360I 15.9667 0.9405I
u = 1.001330 + 0.130771I
a = 0.822888 + 0.752742I
b = 0.402636 1.030140I
3.57553 + 5.62812I 12.5450 6.6163I
u = 1.001330 0.130771I
a = 0.822888 0.752742I
b = 0.402636 + 1.030140I
3.57553 5.62812I 12.5450 + 6.6163I
u = 0.760211 + 0.865552I
a = 1.24479 0.91941I
b = 2.02625 0.25873I
7.41712 0.40141I 2.13735 + 2.27627I
u = 0.760211 0.865552I
a = 1.24479 + 0.91941I
b = 2.02625 + 0.25873I
7.41712 + 0.40141I 2.13735 2.27627I
u = 0.729818 + 0.904919I
a = 1.56496 + 1.41813I
b = 2.37154 + 0.16884I
10.52250 4.79311I 0.73258 + 1.28832I
u = 0.729818 0.904919I
a = 1.56496 1.41813I
b = 2.37154 0.16884I
10.52250 + 4.79311I 0.73258 1.28832I
u = 0.925994 + 0.739498I
a = 0.317422 0.284084I
b = 0.032960 1.025040I
2.70773 + 8.50857I 3.70396 8.56767I
u = 0.925994 0.739498I
a = 0.317422 + 0.284084I
b = 0.032960 + 1.025040I
2.70773 8.50857I 3.70396 + 8.56767I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.820795 + 0.890761I
a = 1.65081 + 0.21101I
b = 1.82529 + 0.81637I
12.04400 + 4.45797I 1.81976 4.80562I
u = 0.820795 0.890761I
a = 1.65081 0.21101I
b = 1.82529 0.81637I
12.04400 4.45797I 1.81976 + 4.80562I
u = 1.024520 + 0.763888I
a = 1.15966 1.14324I
b = 2.19721 0.55212I
5.73077 + 11.79410I 4.86199 7.29279I
u = 1.024520 0.763888I
a = 1.15966 + 1.14324I
b = 2.19721 + 0.55212I
5.73077 11.79410I 4.86199 + 7.29279I
u = 1.004430 + 0.806604I
a = 0.56218 + 1.55066I
b = 1.64632 0.45435I
10.85360 8.18091I 0.32980 + 5.06079I
u = 1.004430 0.806604I
a = 0.56218 1.55066I
b = 1.64632 + 0.45435I
10.85360 + 8.18091I 0.32980 5.06079I
u = 0.602609 + 0.358517I
a = 0.517620 0.652115I
b = 0.102178 1.019880I
0.06490 4.25573I 5.05969 + 5.51828I
u = 0.602609 0.358517I
a = 0.517620 + 0.652115I
b = 0.102178 + 1.019880I
0.06490 + 4.25573I 5.05969 5.51828I
u = 1.051550 + 0.766917I
a = 1.53210 + 1.34344I
b = 2.87795 + 0.47141I
8.4633 17.2201I 2.43977 + 10.58669I
u = 1.051550 0.766917I
a = 1.53210 1.34344I
b = 2.87795 0.47141I
8.4633 + 17.2201I 2.43977 10.58669I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.638863 + 0.153437I
a = 0.327734 + 0.320762I
b = 0.626252 + 0.329284I
1.105580 + 0.097930I 9.88722 0.56674I
u = 0.638863 0.153437I
a = 0.327734 0.320762I
b = 0.626252 0.329284I
1.105580 0.097930I 9.88722 + 0.56674I
u = 0.224865 + 0.471112I
a = 1.309200 0.505527I
b = 0.211349 0.055814I
1.61046 + 1.10126I 1.71956 0.90297I
u = 0.224865 0.471112I
a = 1.309200 + 0.505527I
b = 0.211349 + 0.055814I
1.61046 1.10126I 1.71956 + 0.90297I
7
II. I
u
2
= h−1.28 × 10
16
u
51
5.11 × 10
16
u
50
+ · · · + 3.64 × 10
17
b + 4.60 ×
10
17
, 2.08 × 10
17
u
51
4.63 × 10
17
u
50
+ · · · + 7.29 × 10
17
a + 2.74 ×
10
18
, u
52
2u
51
+ · · · + 20u + 4i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
0.285839u
51
+ 0.634563u
50
+ ··· 11.9888u 3.76438
0.0351666u
51
+ 0.140304u
50
+ ··· 7.18667u 1.26080
a
3
=
u
u
3
+ u
a
2
=
0.376087u
51
+ 0.637127u
50
+ ··· 10.2579u 3.06437
0.0536490u
51
+ 0.328407u
50
+ ··· 4.99796u 1.24908
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
u
2
+ 1
u
4
a
6
=
0.0501715u
51
+ 0.417802u
50
+ ··· 9.11537u 4.14850
0.102327u
51
0.0485043u
50
+ ··· 8.90760u 1.99867
a
5
=
0.0611096u
51
0.333673u
50
+ ··· + 7.08230u 1.32447
0.120328u
51
+ 0.230313u
50
+ ··· + 6.03865u + 0.284922
a
12
=
0.336174u
51
+ 0.534328u
50
+ ··· 6.12727u 2.93706
0.185608u
51
+ 0.186049u
50
+ ··· 7.63784u 1.44011
a
11
=
0.222742u
51
+ 0.513738u
50
+ ··· + 5.05004u + 4.21170
0.221796u
51
0.742510u
50
+ ··· 0.144816u + 0.763127
(ii) Obstruction class = 1
(iii) Cusp Shapes =
175172589829383178
91124580510363867
u
51
434551767463876444
91124580510363867
u
50
+ ···+
784093020302745154
91124580510363867
u +
353320257970419306
30374860170121289
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
26
+ 15u
25
+ ··· + 4u + 1)
2
c
2
, c
5
(u
26
u
25
+ ··· 2u
2
+ 1)
2
c
3
, c
4
, c
8
c
11
u
52
2u
51
+ ··· + 20u + 4
c
6
(u
26
3u
25
+ ··· + 4u + 1)
2
c
7
, c
9
, c
10
c
12
u
52
16u
51
+ ··· 152u + 16
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
26
3y
25
+ ··· 16y + 1)
2
c
2
, c
5
(y
26
15y
25
+ ··· 4y + 1)
2
c
3
, c
4
, c
8
c
11
y
52
16y
51
+ ··· 152y + 16
c
6
(y
26
+ 21y
25
+ ··· 68y + 1)
2
c
7
, c
9
, c
10
c
12
y
52
+ 40y
51
+ ··· + 78048y + 256
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.752589 + 0.686692I
a = 1.19861 1.00203I
b = 1.75066 0.28301I
0.134724 0.617454I 7.60333 + 0.92062I
u = 0.752589 0.686692I
a = 1.19861 + 1.00203I
b = 1.75066 + 0.28301I
0.134724 + 0.617454I 7.60333 0.92062I
u = 1.021920 + 0.291673I
a = 0.675586 0.356154I
b = 0.0136506 0.1110620I
0.134724 + 0.617454I 7.60333 0.92062I
u = 1.021920 0.291673I
a = 0.675586 + 0.356154I
b = 0.0136506 + 0.1110620I
0.134724 0.617454I 7.60333 + 0.92062I
u = 0.842250 + 0.401014I
a = 0.301397 + 0.041356I
b = 0.014640 1.010940I
0.11473 4.15162I 6.01126 + 6.89813I
u = 0.842250 0.401014I
a = 0.301397 0.041356I
b = 0.014640 + 1.010940I
0.11473 + 4.15162I 6.01126 6.89813I
u = 0.752492 + 0.788189I
a = 1.69455 + 1.94272I
b = 2.70085 0.03238I
2.50569 + 4.90020I 3.66047 4.25570I
u = 0.752492 0.788189I
a = 1.69455 1.94272I
b = 2.70085 + 0.03238I
2.50569 4.90020I 3.66047 + 4.25570I
u = 0.951867 + 0.554822I
a = 1.110860 + 0.329191I
b = 0.36805 1.46263I
0.330999 4.51777 + 0.I
u = 0.951867 0.554822I
a = 1.110860 0.329191I
b = 0.36805 + 1.46263I
0.330999 4.51777 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.084340 + 0.227015I
a = 0.703611 0.413455I
b = 0.194210 0.006182I
0.74787 5.97219I 9.15925 + 6.03254I
u = 1.084340 0.227015I
a = 0.703611 + 0.413455I
b = 0.194210 + 0.006182I
0.74787 + 5.97219I 9.15925 6.03254I
u = 0.885563 + 0.095980I
a = 1.47605 + 0.13629I
b = 0.239465 1.096400I
2.16312 4.62114I 11.65491 + 5.89029I
u = 0.885563 0.095980I
a = 1.47605 0.13629I
b = 0.239465 + 1.096400I
2.16312 + 4.62114I 11.65491 5.89029I
u = 0.988091 + 0.542376I
a = 0.473259 + 0.644867I
b = 0.136840 1.204680I
1.24430 4.51893I 1.06028 + 5.49831I
u = 0.988091 0.542376I
a = 0.473259 0.644867I
b = 0.136840 + 1.204680I
1.24430 + 4.51893I 1.06028 5.49831I
u = 0.652457 + 0.571498I
a = 0.98577 1.47704I
b = 0.58799 + 1.32773I
1.24430 + 4.51893I 1.06028 5.49831I
u = 0.652457 0.571498I
a = 0.98577 + 1.47704I
b = 0.58799 1.32773I
1.24430 4.51893I 1.06028 + 5.49831I
u = 0.722344 + 0.873653I
a = 1.27009 0.90834I
b = 2.02407 0.21519I
6.66680 5.70836I 3.28436 + 2.61089I
u = 0.722344 0.873653I
a = 1.27009 + 0.90834I
b = 2.02407 + 0.21519I
6.66680 + 5.70836I 3.28436 2.61089I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.971674 + 0.598016I
a = 0.392194 0.140230I
b = 0.003048 0.949049I
2.16312 + 4.62114I 11.65491 5.89029I
u = 0.971674 0.598016I
a = 0.392194 + 0.140230I
b = 0.003048 + 0.949049I
2.16312 4.62114I 11.65491 + 5.89029I
u = 0.695608 + 0.907900I
a = 1.66112 + 1.35074I
b = 2.39253 + 0.23778I
9.5709 + 11.0305I 0.68896 6.00028I
u = 0.695608 0.907900I
a = 1.66112 1.35074I
b = 2.39253 0.23778I
9.5709 11.0305I 0.68896 + 6.00028I
u = 0.128928 + 0.836166I
a = 0.704339 0.655474I
b = 0.253889 0.601697I
6.22742 7.20928I 0.73612 + 6.27610I
u = 0.128928 0.836166I
a = 0.704339 + 0.655474I
b = 0.253889 + 0.601697I
6.22742 + 7.20928I 0.73612 6.27610I
u = 0.834456 + 0.812598I
a = 1.21182 + 1.89134I
b = 2.39545 0.28919I
6.53686 1.23377I 1.59190 + 0.83965I
u = 0.834456 0.812598I
a = 1.21182 1.89134I
b = 2.39545 + 0.28919I
6.53686 + 1.23377I 1.59190 0.83965I
u = 0.054522 + 0.827933I
a = 0.782373 0.644964I
b = 0.272506 0.513614I
6.53686 + 1.23377I 1.59190 0.83965I
u = 0.054522 0.827933I
a = 0.782373 + 0.644964I
b = 0.272506 + 0.513614I
6.53686 1.23377I 1.59190 + 0.83965I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.139850 + 0.271378I
a = 0.431580 + 0.818565I
b = 0.237751 0.669102I
2.50569 4.90020I 3.66047 + 4.25570I
u = 1.139850 0.271378I
a = 0.431580 0.818565I
b = 0.237751 + 0.669102I
2.50569 + 4.90020I 3.66047 4.25570I
u = 0.955556 + 0.693925I
a = 1.33481 1.07208I
b = 2.06526 0.70643I
0.74787 + 5.97219I 9.15925 6.03254I
u = 0.955556 0.693925I
a = 1.33481 + 1.07208I
b = 2.06526 + 0.70643I
0.74787 5.97219I 9.15925 + 6.03254I
u = 1.160440 + 0.222987I
a = 0.476162 + 0.877504I
b = 0.345484 0.648450I
1.81559 + 10.65820I 6.00000 9.11948I
u = 1.160440 0.222987I
a = 0.476162 0.877504I
b = 0.345484 + 0.648450I
1.81559 10.65820I 6.00000 + 9.11948I
u = 0.782234 + 0.897806I
a = 1.60548 + 0.09310I
b = 1.66931 + 0.79077I
11.54940 + 1.88087I 0
u = 0.782234 0.897806I
a = 1.60548 0.09310I
b = 1.66931 0.79077I
11.54940 1.88087I 0
u = 0.535320 + 0.606452I
a = 1.054240 0.782163I
b = 0.070591 + 0.734237I
2.58244 2.20453 + 0.I
u = 0.535320 0.606452I
a = 1.054240 + 0.782163I
b = 0.070591 0.734237I
2.58244 2.20453 + 0.I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.934473 + 0.782146I
a = 2.03442 + 0.84782I
b = 2.58958 + 1.04646I
6.22742 + 7.20928I 0. 6.27610I
u = 0.934473 0.782146I
a = 2.03442 0.84782I
b = 2.58958 1.04646I
6.22742 7.20928I 0. + 6.27610I
u = 0.978705 + 0.735947I
a = 2.06142 + 1.31787I
b = 3.02109 + 0.91961I
1.81559 10.65820I 6.00000 + 9.11948I
u = 0.978705 0.735947I
a = 2.06142 1.31787I
b = 3.02109 0.91961I
1.81559 + 10.65820I 6.00000 9.11948I
u = 1.001680 + 0.777271I
a = 1.16815 1.10223I
b = 2.16629 0.53914I
6.66680 5.70836I 0
u = 1.001680 0.777271I
a = 1.16815 + 1.10223I
b = 2.16629 + 0.53914I
6.66680 + 5.70836I 0
u = 0.978293 + 0.824595I
a = 0.66515 + 1.58276I
b = 1.76953 0.40279I
11.54940 + 1.88087I 0
u = 0.978293 0.824595I
a = 0.66515 1.58276I
b = 1.76953 + 0.40279I
11.54940 1.88087I 0
u = 1.034790 + 0.782497I
a = 1.58803 + 1.23418I
b = 2.80611 + 0.54589I
9.5709 + 11.0305I 0
u = 1.034790 0.782497I
a = 1.58803 1.23418I
b = 2.80611 0.54589I
9.5709 11.0305I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.210315 + 0.193461I
a = 0.16245 3.16407I
b = 0.497755 0.746437I
0.11473 4.15162I 6.01126 + 6.89813I
u = 0.210315 0.193461I
a = 0.16245 + 3.16407I
b = 0.497755 + 0.746437I
0.11473 + 4.15162I 6.01126 6.89813I
16
III. I
u
3
= hu
3
+ u
2
+ b, u
2
+ a + 1, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
u
2
1
u
3
u
2
a
3
=
u
u
3
+ u
a
2
=
u
3
+ u
2
u 1
2u
3
u
2
a
7
=
u
2
+ 1
u
2
a
10
=
0
u
2
+ 1
a
6
=
u
3
u
2
+ u + 1
u
3
+ 2u
2
1
a
5
=
u
u
3
u 1
a
12
=
u
2
1
u
3
u
2
+ 1
a
11
=
1
u
3
u
2
+ u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
2
+ 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
12
(u
2
u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
u
4
u
2
+ 1
c
7
, c
10
(u
2
+ u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
10
, c
12
(y
2
+ y + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
(y
2
y + 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.500000 + 0.866025I
b = 0.50000 1.86603I
6.08965I 6.00000 10.39230I
u = 0.866025 0.500000I
a = 0.500000 0.866025I
b = 0.50000 + 1.86603I
6.08965I 6.00000 + 10.39230I
u = 0.866025 + 0.500000I
a = 0.500000 0.866025I
b = 0.500000 0.133975I
6.08965I 6.00000 + 10.39230I
u = 0.866025 0.500000I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.133975I
6.08965I 6.00000 10.39230I
20
IV. I
u
4
= hb u, a, u
12
u
11
+ · · · 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
0
u
a
3
=
u
u
3
+ u
a
2
=
u
3
u
5
+ u
3
+ u
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
u
2
+ 1
u
4
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
u
4
u
2
+ 1
u
6
2u
4
+ u
2
a
12
=
u
9
+ 2u
7
3u
5
+ 2u
3
u
u
9
u
7
+ u
5
+ u
a
11
=
u
11
+ u
10
+ 3u
9
3u
8
4u
7
+ 5u
6
+ 2u
5
4u
4
+ u
2
u + 1
u
7
+ u
5
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
8u
8
+ 12u
6
4u
5
8u
4
+ 4u
3
+ 4u
2
4u + 10
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 5u
11
+ 14u
10
+ 25u
9
+ 32u
8
+ 27u
7
+ 13u
6
3u
5
8u
4
6u
3
+ 1
c
2
, c
3
, c
5
c
8
u
12
u
11
2u
10
+ 3u
9
+ 2u
8
5u
7
+ u
6
+ 3u
5
2u
4
+ 2u
2
2u + 1
c
4
, c
11
(u
3
+ u
2
1)
4
c
6
u
12
3u
11
+ ··· 12u + 5
c
7
, c
9
u
12
5u
11
+ 14u
10
25u
9
+ 32u
8
27u
7
+ 13u
6
+ 3u
5
8u
4
+ 6u
3
+ 1
c
10
, c
12
(u
3
u
2
+ 2u 1)
4
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
12
+ 3y
11
+ ··· 16y
2
+ 1
c
2
, c
3
, c
5
c
8
y
12
5y
11
+ 14y
10
25y
9
+ 32y
8
27y
7
+ 13y
6
+ 3y
5
8y
4
+ 6y
3
+ 1
c
4
, c
11
(y
3
y
2
+ 2y 1)
4
c
6
y
12
y
11
+ ··· + 36y + 25
c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.823263 + 0.757838I
a = 0
b = 0.823263 + 0.757838I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.823263 0.757838I
a = 0
b = 0.823263 0.757838I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.968261 + 0.566202I
a = 0
b = 0.968261 + 0.566202I
1.11345 9.01951 + 0.I
u = 0.968261 0.566202I
a = 0
b = 0.968261 0.566202I
1.11345 9.01951 + 0.I
u = 1.120810 + 0.355729I
a = 0
b = 1.120810 + 0.355729I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.120810 0.355729I
a = 0
b = 1.120810 0.355729I
3.02413 2.82812I 2.49024 + 2.97945I
u = 1.120460 + 0.417373I
a = 0
b = 1.120460 + 0.417373I
3.02413 + 2.82812I 2.49024 2.97945I
u = 1.120460 0.417373I
a = 0
b = 1.120460 0.417373I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.590822 + 0.500935I
a = 0
b = 0.590822 + 0.500935I
1.11345 9.01951 + 0.I
u = 0.590822 0.500935I
a = 0
b = 0.590822 0.500935I
1.11345 9.01951 + 0.I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.053832 + 0.729598I
a = 0
b = 0.053832 + 0.729598I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.053832 0.729598I
a = 0
b = 0.053832 0.729598I
3.02413 2.82812I 2.49024 + 2.97945I
25
V.
I
u
5
= ha
3
u
2
+ 5a
2
u
2
+ · · · + 5a 48, 2a
2
u
2
6u
2
a + · · · + 6a 1, u
3
+ u
2
1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
a
0.0217391a
3
u
2
0.108696a
2
u
2
+ ··· 0.108696a + 1.04348
a
3
=
u
u
2
+ u 1
a
2
=
0.0652174a
3
u
2
+ 0.326087a
2
u
2
+ ··· + 0.326087a + 0.369565
0.108696a
3
u
2
+ 0.0434783a
2
u
2
+ ··· + 0.543478a + 0.782609
a
7
=
u
2
+ 1
u
2
a
10
=
u
u
2
u + 1
a
6
=
0.173913a
3
u
2
+ 0.130435a
2
u
2
+ ··· + 0.630435a + 1.34783
0.521739a
3
u
2
+ 0.108696a
2
u
2
+ ··· 0.891304a 1.04348
a
5
=
0.0217391a
3
u
2
0.108696a
2
u
2
+ ··· + 0.891304a + 1.04348
0.108696a
3
u
2
0.543478a
2
u
2
+ ··· 0.543478a 1.78261
a
12
=
0.0652174a
3
u
2
+ 0.326087a
2
u
2
+ ··· + 0.326087a + 0.369565
0.108696a
3
u
2
+ 0.0434783a
2
u
2
+ ··· + 0.543478a + 0.782609
a
11
=
0.369565a
3
u
2
0.152174a
2
u
2
+ ··· 0.652174a 0.239130
0.0869565a
3
u
2
0.434783a
2
u
2
+ ··· 0.434783a 1.82609
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 6
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 5u
11
+ 14u
10
+ 25u
9
+ 32u
8
+ 27u
7
+ 13u
6
3u
5
8u
4
6u
3
+ 1
c
2
, c
4
, c
5
c
11
u
12
u
11
2u
10
+ 3u
9
+ 2u
8
5u
7
+ u
6
+ 3u
5
2u
4
+ 2u
2
2u + 1
c
3
, c
8
(u
3
+ u
2
1)
4
c
6
u
12
3u
11
+ ··· 12u + 5
c
7
, c
9
(u
3
u
2
+ 2u 1)
4
c
10
, c
12
u
12
5u
11
+ 14u
10
25u
9
+ 32u
8
27u
7
+ 13u
6
+ 3u
5
8u
4
+ 6u
3
+ 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
y
12
+ 3y
11
+ ··· 16y
2
+ 1
c
2
, c
4
, c
5
c
11
y
12
5y
11
+ 14y
10
25y
9
+ 32y
8
27y
7
+ 13y
6
+ 3y
5
8y
4
+ 6y
3
+ 1
c
3
, c
8
(y
3
y
2
+ 2y 1)
4
c
6
y
12
y
11
+ ··· + 36y + 25
c
7
, c
9
(y
3
+ 3y
2
+ 2y 1)
4
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.290605 0.301472I
b = 0.010927 1.027890I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.877439 + 0.744862I
a = 1.24058 0.98320I
b = 1.95244 0.50017I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.877439 + 0.744862I
a = 0.83409 + 2.24143I
b = 2.38794 0.77609I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.877439 + 0.744862I
a = 2.45197 + 0.53297I
b = 2.43100 + 1.55928I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.877439 0.744862I
a = 0.290605 + 0.301472I
b = 0.010927 + 1.027890I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.877439 0.744862I
a = 1.24058 + 0.98320I
b = 1.95244 + 0.50017I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.877439 0.744862I
a = 0.83409 2.24143I
b = 2.38794 + 0.77609I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.877439 0.744862I
a = 2.45197 0.53297I
b = 2.43100 1.55928I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.754878
a = 1.024590 + 0.311643I
b = 0.570737 + 0.650080I
1.11345 9.01950
u = 0.754878
a = 1.024590 0.311643I
b = 0.570737 0.650080I
1.11345 9.01950
29
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.754878
a = 1.77946 + 0.29139I
b = 0.05182 1.57785I
1.11345 9.01950
u = 0.754878
a = 1.77946 0.29139I
b = 0.05182 + 1.57785I
1.11345 9.01950
30
VI. I
u
6
= hb u, a, u
3
+ u
2
1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
0
u
a
3
=
u
u
2
+ u 1
a
2
=
u
2
1
u
2
+ 2u
a
7
=
u
2
+ 1
u
2
a
10
=
u
u
2
u + 1
a
6
=
u
2
+ 1
u
2
u + 1
a
5
=
u
2u
2
u + 2
a
12
=
u
2
1
u
2
+ 2u
a
11
=
1
2u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 6
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
+ 2u + 1
c
2
, c
3
, c
4
c
5
, c
8
, c
11
u
3
+ u
2
1
c
6
u
3
+ 3u
2
+ 2u 1
c
7
, c
9
, c
10
c
12
u
3
u
2
+ 2u 1
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
3
, c
4
c
5
, c
8
, c
11
y
3
y
2
+ 2y 1
c
6
y
3
5y
2
+ 10y 1
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.877439 + 0.744862I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.877439 0.744862I
a = 0
b = 0.877439 0.744862I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.754878
a = 0
b = 0.754878
1.11345 9.01950
34
VII. I
u
7
= h−u
2
+ b u + 1, a 1, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
1
u
2
+ u 1
a
3
=
u
u
3
+ u
a
2
=
u
3
+ 1
u
2
+ 2u 1
a
7
=
u
2
+ 1
u
2
a
10
=
0
u
2
+ 1
a
6
=
u
3
u
2
+ u + 1
u
3
+ u
2
+ 1
a
5
=
u
3
u
2
+ u + 1
a
12
=
1
u 1
a
11
=
u
2
+ 1
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
12
(u
2
u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
u
4
u
2
+ 1
c
7
, c
10
(u
2
+ u + 1)
2
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
10
, c
12
(y
2
+ y + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
(y
2
y + 1)
2
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.00000
b = 0.36603 + 1.36603I
2.02988I 6.00000 + 3.46410I
u = 0.866025 0.500000I
a = 1.00000
b = 0.36603 1.36603I
2.02988I 6.00000 3.46410I
u = 0.866025 + 0.500000I
a = 1.00000
b = 1.36603 0.36603I
2.02988I 6.00000 3.46410I
u = 0.866025 0.500000I
a = 1.00000
b = 1.36603 + 0.36603I
2.02988I 6.00000 + 3.46410I
38
VIII. I
u
8
= hu
2
+ b u, u
2
+ a + 1, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
u
2
1
u
2
+ u
a
3
=
u
u
3
+ u
a
2
=
u
3
+ u
2
1
u
2
+ 2u
a
7
=
u
2
+ 1
u
2
a
10
=
0
u
2
+ 1
a
6
=
u
3
u
2
+ 1
u
2
u + 1
a
5
=
u
u
3
u
2
u + 1
a
12
=
u
2
1
u
2
+ u + 1
a
11
=
1
u
3
u
2
+ 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
12
(u
2
u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
u
4
u
2
+ 1
c
7
, c
10
(u
2
+ u + 1)
2
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
10
, c
12
(y
2
+ y + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
(y
2
y + 1)
2
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.500000 + 0.866025I
b = 0.366025 0.366025I
2.02988I 6.00000 3.46410I
u = 0.866025 0.500000I
a = 0.500000 0.866025I
b = 0.366025 + 0.366025I
2.02988I 6.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 0.500000 0.866025I
b = 1.36603 + 1.36603I
2.02988I 6.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.500000 + 0.866025I
b = 1.36603 1.36603I
2.02988I 6.00000 3.46410I
42
IX. I
u
9
= hu
3
u
2
+ b + 1, a 1, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
1
u
3
+ u
2
1
a
3
=
u
u
3
+ u
a
2
=
u
3
u + 1
2u
3
+ u
2
1
a
7
=
u
2
+ 1
u
2
a
10
=
0
u
2
+ 1
a
6
=
u
2
u + 1
u
3
+ 2u
2
+ u 1
a
5
=
u
3
u 1
a
12
=
1
u
3
1
a
11
=
u
2
+ 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
12
(u
2
u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
u
4
u
2
+ 1
c
7
, c
10
(u
2
+ u + 1)
2
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
c
10
, c
12
(y
2
+ y + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
8
c
11
(y
2
y + 1)
2
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.00000
b = 0.500000 0.133975I
2.02988I 6.00000 3.46410I
u = 0.866025 0.500000I
a = 1.00000
b = 0.500000 + 0.133975I
2.02988I 6.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 1.00000
b = 0.50000 1.86603I
2.02988I 6.00000 + 3.46410I
u = 0.866025 0.500000I
a = 1.00000
b = 0.50000 + 1.86603I
2.02988I 6.00000 3.46410I
46
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
8
(u
3
+ u
2
+ 2u + 1)
· (u
12
+ 5u
11
+ 14u
10
+ 25u
9
+ 32u
8
+ 27u
7
+ 13u
6
3u
5
8u
4
6u
3
+ 1)
2
· (u
24
+ 12u
23
+ ··· + 56u + 16)(u
26
+ 15u
25
+ ··· + 4u + 1)
2
c
2
, c
5
(u
3
+ u
2
1)(u
4
u
2
+ 1)
4
· (u
12
u
11
2u
10
+ 3u
9
+ 2u
8
5u
7
+ u
6
+ 3u
5
2u
4
+ 2u
2
2u + 1)
2
· (u
24
+ 4u
23
+ ··· + 12u + 4)(u
26
u
25
+ ··· 2u
2
+ 1)
2
c
3
, c
4
, c
8
c
11
(u
3
+ u
2
1)
5
(u
4
u
2
+ 1)
4
· (u
12
u
11
2u
10
+ 3u
9
+ 2u
8
5u
7
+ u
6
+ 3u
5
2u
4
+ 2u
2
2u + 1)
· (u
24
u
23
+ ··· 3u
2
+ 1)(u
52
2u
51
+ ··· + 20u + 4)
c
6
(u
3
+ 3u
2
+ 2u 1)(u
4
u
2
+ 1)
4
(u
12
3u
11
+ ··· 12u + 5)
2
· (u
24
+ 12u
23
+ ··· + 876u + 188)(u
26
3u
25
+ ··· + 4u + 1)
2
c
7
, c
10
(u
2
+ u + 1)
8
(u
3
u
2
+ 2u 1)
5
· (u
12
5u
11
+ 14u
10
25u
9
+ 32u
8
27u
7
+ 13u
6
+ 3u
5
8u
4
+ 6u
3
+ 1)
· (u
24
7u
23
+ ··· 6u + 1)(u
52
16u
51
+ ··· 152u + 16)
c
9
, c
12
(u
2
u + 1)
8
(u
3
u
2
+ 2u 1)
5
· (u
12
5u
11
+ 14u
10
25u
9
+ 32u
8
27u
7
+ 13u
6
+ 3u
5
8u
4
+ 6u
3
+ 1)
· (u
24
7u
23
+ ··· 6u + 1)(u
52
16u
51
+ ··· 152u + 16)
47
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
8
)(y
3
+ 3y
2
+ 2y 1)(y
12
+ 3y
11
+ ··· 16y
2
+ 1)
2
· (y
24
+ 24y
22
+ ··· + 1760y + 256)(y
26
3y
25
+ ··· 16y + 1)
2
c
2
, c
5
(y
2
y + 1)
8
(y
3
y
2
+ 2y 1)
· (y
12
5y
11
+ 14y
10
25y
9
+ 32y
8
27y
7
+ 13y
6
+ 3y
5
8y
4
+ 6y
3
+ 1)
2
· (y
24
12y
23
+ ··· 56y + 16)(y
26
15y
25
+ ··· 4y + 1)
2
c
3
, c
4
, c
8
c
11
(y
2
y + 1)
8
(y
3
y
2
+ 2y 1)
5
· (y
12
5y
11
+ 14y
10
25y
9
+ 32y
8
27y
7
+ 13y
6
+ 3y
5
8y
4
+ 6y
3
+ 1)
· (y
24
7y
23
+ ··· 6y + 1)(y
52
16y
51
+ ··· 152y + 16)
c
6
((y
2
y + 1)
8
)(y
3
5y
2
+ 10y 1)(y
12
y
11
+ ··· + 36y + 25)
2
· (y
24
+ 12y
23
+ ··· 37560y + 35344)(y
26
+ 21y
25
+ ··· 68y + 1)
2
c
7
, c
9
, c
10
c
12
((y
2
+ y + 1)
8
)(y
3
+ 3y
2
+ 2y 1)
5
(y
12
+ 3y
11
+ ··· 16y
2
+ 1)
· (y
24
+ 25y
23
+ ··· + 6y + 1)(y
52
+ 40y
51
+ ··· + 78048y + 256)
48