10
29
(K10a
53
)
A knot diagram
1
Linearized knot diagam
8 1 6 9 10 3 2 7 5 4
Solving Sequence
6,10
5 9 4 1 3 7 2 8
c
5
c
9
c
4
c
10
c
3
c
6
c
2
c
8
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
31
+ u
30
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
31
+ u
30
+ · · · + 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
1
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
3
=
u
4
+ u
2
+ 1
u
4
2u
2
a
7
=
u
8
3u
6
+ u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
2
=
u
16
+ 7u
14
19u
12
+ 24u
10
13u
8
+ 2u
6
2u
4
+ 2u
2
+ 1
u
18
8u
16
+ 25u
14
36u
12
+ 19u
10
+ 4u
8
2u
6
2u
4
3u
2
a
8
=
u
19
+ 8u
17
24u
15
+ 30u
13
7u
11
10u
9
4u
7
+ 6u
5
+ 3u
3
+ 2u
u
19
9u
17
+ 32u
15
55u
13
+ 43u
11
9u
9
4u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
28
52u
26
+ 4u
25
+ 292u
24
48u
23
916u
22
+ 244u
21
+
1732u
20
672u
19
1988u
18
+ 1056u
17
+ 1360u
16
896u
15
644u
14
+ 332u
13
+
420u
12
60u
11
288u
10
+ 84u
9
+ 88u
8
16u
6
44u
5
+ 4u
2
16u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
31
u
30
+ ··· + 2u
2
+ 1
c
2
, c
8
u
31
+ 11u
30
+ ··· 4u 1
c
3
, c
6
u
31
+ 5u
30
+ ··· + 40u + 7
c
4
, c
5
, c
9
u
31
+ u
30
+ ··· + 2u + 1
c
10
u
31
3u
30
+ ··· 13u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
31
+ 11y
30
+ ··· 4y 1
c
2
, c
8
y
31
+ 19y
30
+ ··· 8y 1
c
3
, c
6
y
31
+ 23y
30
+ ··· 640y 49
c
4
, c
5
, c
9
y
31
29y
30
+ ··· 4y 1
c
10
y
31
9y
30
+ ··· + 1481y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.196790 + 0.189244I
0.502956 + 0.402984I 0.929300 0.528315I
u = 1.196790 0.189244I
0.502956 0.402984I 0.929300 + 0.528315I
u = 0.371332 + 0.681959I
0.47562 8.17190I 2.44268 + 8.00325I
u = 0.371332 0.681959I
0.47562 + 8.17190I 2.44268 8.00325I
u = 0.434998 + 0.611250I
4.89690 1.99617I 7.89924 + 3.62729I
u = 0.434998 0.611250I
4.89690 + 1.99617I 7.89924 3.62729I
u = 1.239060 + 0.217665I
0.12823 5.89464I 1.94513 + 6.44091I
u = 1.239060 0.217665I
0.12823 + 5.89464I 1.94513 6.44091I
u = 0.529247 + 0.517876I
1.14145 + 4.14236I 4.20039 2.04013I
u = 0.529247 0.517876I
1.14145 4.14236I 4.20039 + 2.04013I
u = 0.343506 + 0.654959I
0.72976 + 2.73446I 0.23310 3.38925I
u = 0.343506 0.654959I
0.72976 2.73446I 0.23310 + 3.38925I
u = 1.26234
2.75281 1.58210
u = 0.028009 + 0.652167I
3.99591 + 2.71284I 3.89942 3.44665I
u = 0.028009 0.652167I
3.99591 2.71284I 3.89942 + 3.44665I
u = 1.358560 + 0.080822I
5.22411 2.56488I 9.16453 + 4.43258I
u = 1.358560 0.080822I
5.22411 + 2.56488I 9.16453 4.43258I
u = 0.464772 + 0.428483I
0.007927 + 0.929922I 2.40372 3.68841I
u = 0.464772 0.428483I
0.007927 0.929922I 2.40372 + 3.68841I
u = 1.43568 + 0.18978I
5.89237 3.33239I 5.23670 + 3.21859I
u = 1.43568 0.18978I
5.89237 + 3.33239I 5.23670 3.21859I
u = 1.43808 + 0.24908I
4.99237 6.04082I 4.35365 + 3.16093I
u = 1.43808 0.24908I
4.99237 + 6.04082I 4.35365 3.16093I
u = 1.45066 + 0.25754I
6.33335 + 11.60290I 6.34947 7.70694I
u = 1.45066 0.25754I
6.33335 11.60290I 6.34947 + 7.70694I
u = 1.46473 + 0.17711I
7.51197 1.64856I 8.01509 + 2.12263I
u = 1.46473 0.17711I
7.51197 + 1.64856I 8.01509 2.12263I
u = 1.46230 + 0.22292I
11.00390 + 5.04935I 11.12529 3.42516I
u = 1.46230 0.22292I
11.00390 5.04935I 11.12529 + 3.42516I
u = 0.265022 + 0.399657I
0.107136 + 1.026300I 1.81008 6.41690I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.265022 0.399657I
0.107136 1.026300I 1.81008 + 6.41690I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
31
u
30
+ ··· + 2u
2
+ 1
c
2
, c
8
u
31
+ 11u
30
+ ··· 4u 1
c
3
, c
6
u
31
+ 5u
30
+ ··· + 40u + 7
c
4
, c
5
, c
9
u
31
+ u
30
+ ··· + 2u + 1
c
10
u
31
3u
30
+ ··· 13u 16
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
31
+ 11y
30
+ ··· 4y 1
c
2
, c
8
y
31
+ 19y
30
+ ··· 8y 1
c
3
, c
6
y
31
+ 23y
30
+ ··· 640y 49
c
4
, c
5
, c
9
y
31
29y
30
+ ··· 4y 1
c
10
y
31
9y
30
+ ··· + 1481y 256
8