12a
0345
(K12a
0345
)
A knot diagram
1
Linearized knot diagam
3 6 9 7 2 5 11 4 1 12 8 10
Solving Sequence
2,6
3 1 5 7
4,10
9 8 12 11
c
2
c
1
c
5
c
6
c
4
c
9
c
8
c
12
c
10
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
+ u
7
u
6
3u
5
+ 2u
3
+ b u, u
12
u
10
+ 5u
8
4u
6
+ 6u
4
3u
2
+ a u + 2,
u
13
u
12
u
11
+ 2u
10
+ 4u
9
5u
8
3u
7
+ 6u
6
+ 4u
5
6u
4
2u
3
+ 2u
2
+ 2u 1i
I
u
2
= h−3u
47
+ 17u
46
+ ··· + 2b + 1, 11u
47
+ 29u
46
+ ··· + 2a + 3, u
48
3u
47
+ ··· 2u + 1i
I
u
3
= hb + u, a + u, u
3
+ u
2
1i
I
u
4
= hb a, u
2
a + a
2
+ u
2
+ 2u + 1, u
3
+ u
2
1i
* 4 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
9
+ u
7
u
6
3u
5
+ 2u
3
+ b u, u
12
u
10
+ 5u
8
4u
6
+ 6u
4
3u
2
+ a u + 2, u
13
u
12
+ · · · + 2u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
7
=
u
3
u
3
+ u
a
4
=
u
5
+ u
u
5
u
3
+ u
a
10
=
u
12
+ u
10
5u
8
+ 4u
6
6u
4
+ 3u
2
+ u 2
u
9
u
7
+ u
6
+ 3u
5
2u
3
+ u
a
9
=
u
12
+ u
10
5u
8
+ 4u
6
7u
4
+ 4u
2
+ u 2
u
9
u
7
+ 3u
5
2u
3
+ u
a
8
=
u
8
+ u
6
u
5
3u
4
+ 2u
2
1
u
12
2u
10
+ u
9
+ 5u
8
u
7
6u
6
+ 2u
5
+ 6u
4
u
3
3u
2
+ 1
a
12
=
u
12
u
11
u
10
+ u
9
+ 4u
8
3u
7
4u
6
+ 2u
5
+ 5u
4
u
3
3u
2
u + 2
u
11
+ u
9
u
8
3u
7
+ 2u
5
u
4
u
3
a
11
=
u
12
+ u
11
+ u
10
2u
9
4u
8
+ 4u
7
+ 3u
6
5u
5
5u
4
+ 3u
3
+ 3u
2
2
u
12
u
10
+ 5u
8
4u
6
+ 6u
4
2u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
12
2u
10
+ 18u
8
+ 2u
7
6u
6
4u
5
+ 20u
4
+ 6u
3
2u
2
12u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
u
13
+ 3u
12
+ ··· + 8u + 1
c
2
, c
5
, c
7
c
11
u
13
+ u
12
+ ··· + 2u + 1
c
3
, c
8
u
13
7u
12
+ ··· 24u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
y
13
+ 17y
12
+ ··· + 16y 1
c
2
, c
5
, c
7
c
11
y
13
3y
12
+ ··· + 8y 1
c
3
, c
8
y
13
+ 7y
12
+ ··· + 128y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.923828 + 0.421970I
a = 0.763252 + 0.399422I
b = 0.261288 0.366463I
0.05055 + 6.40816I 12.2349 10.2893I
u = 0.923828 0.421970I
a = 0.763252 0.399422I
b = 0.261288 + 0.366463I
0.05055 6.40816I 12.2349 + 10.2893I
u = 0.801388 + 0.281223I
a = 0.268761 0.576127I
b = 0.168515 + 0.695868I
2.04094 2.18131I 16.1482 + 7.3921I
u = 0.801388 0.281223I
a = 0.268761 + 0.576127I
b = 0.168515 0.695868I
2.04094 + 2.18131I 16.1482 7.3921I
u = 0.537404 + 0.591513I
a = 0.786204 0.602557I
b = 0.632206 0.390230I
2.68260 + 1.42666I 3.83184 3.78939I
u = 0.537404 0.591513I
a = 0.786204 + 0.602557I
b = 0.632206 + 0.390230I
2.68260 1.42666I 3.83184 + 3.78939I
u = 0.855993 + 0.936945I
a = 3.04281 0.69376I
b = 1.58297 3.59981I
18.0409 + 0.9847I 4.10351 + 1.46024I
u = 0.855993 0.936945I
a = 3.04281 + 0.69376I
b = 1.58297 + 3.59981I
18.0409 0.9847I 4.10351 1.46024I
u = 0.928636 + 0.877531I
a = 3.22583 + 2.14654I
b = 0.92820 + 5.06333I
12.42090 + 6.50749I 5.85522 4.78409I
u = 0.928636 0.877531I
a = 3.22583 2.14654I
b = 0.92820 5.06333I
12.42090 6.50749I 5.85522 + 4.78409I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.002580 + 0.857613I
a = 1.90418 2.60319I
b = 0.38407 4.60433I
17.0728 14.2174I 5.54739 + 7.80237I
u = 1.002580 0.857613I
a = 1.90418 + 2.60319I
b = 0.38407 + 4.60433I
17.0728 + 14.2174I 5.54739 7.80237I
u = 0.459806
a = 1.14598
b = 0.333063
0.845259 10.5580
6
II. I
u
2
= h−3u
47
+ 17u
46
+ · · · + 2b + 1, 11u
47
+ 29u
46
+ · · · + 2a + 3, u
48
3u
47
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
7
=
u
3
u
3
+ u
a
4
=
u
5
+ u
u
5
u
3
+ u
a
10
=
11
2
u
47
29
2
u
46
+ ···
17
2
u
3
2
3
2
u
47
17
2
u
46
+ ···
7
2
u
1
2
a
9
=
17
2
u
47
23u
46
+ ··· 9u
5
2
2u
47
27
2
u
46
+ ···
1
2
u
7
2
a
8
=
1
2
u
47
+ 9u
45
+ ··· 19u +
9
2
2u
47
+
13
2
u
46
+ ···
19
2
u +
11
2
a
12
=
1
2
u
45
+ u
44
+ ··· +
7
2
u
2
+
3
2
1
2
u
45
+ u
44
+ ··· +
15
2
u
2
1
2
a
11
=
1
2
u
47
+ 3u
46
+ ··· + 7u 5
1
2
u
46
u
45
+ ··· +
13
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
47
+
23
2
u
46
+ ···
77
2
u +
11
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
u
48
+ 11u
47
+ ··· + 28u + 1
c
2
, c
5
, c
7
c
11
u
48
+ 3u
47
+ ··· + 2u + 1
c
3
, c
8
(u
24
+ 3u
23
+ ··· + 20u + 8)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
y
48
+ 53y
47
+ ··· 188y + 1
c
2
, c
5
, c
7
c
11
y
48
11y
47
+ ··· 28y + 1
c
3
, c
8
(y
24
+ 21y
23
+ ··· + 496y + 64)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.841794 + 0.516230I
a = 0.724878 0.760407I
b = 0.543660 0.322602I
1.74731 + 2.75249I 5.85663 4.25990I
u = 0.841794 0.516230I
a = 0.724878 + 0.760407I
b = 0.543660 + 0.322602I
1.74731 2.75249I 5.85663 + 4.25990I
u = 0.930322 + 0.093737I
a = 0.274062 0.684145I
b = 0.528392 0.143631I
1.87399 + 1.33150I 14.6087 4.8388I
u = 0.930322 0.093737I
a = 0.274062 + 0.684145I
b = 0.528392 + 0.143631I
1.87399 1.33150I 14.6087 + 4.8388I
u = 1.074940 + 0.011887I
a = 0.08400 1.42217I
b = 0.24511 2.16612I
5.18079 + 3.17559I 10.00740 2.50769I
u = 1.074940 0.011887I
a = 0.08400 + 1.42217I
b = 0.24511 + 2.16612I
5.18079 3.17559I 10.00740 + 2.50769I
u = 0.746614 + 0.498009I
a = 0.183156 1.279540I
b = 1.014170 + 0.309519I
4.20175 4.96532I 9.50591 + 5.64619I
u = 0.746614 0.498009I
a = 0.183156 + 1.279540I
b = 1.014170 0.309519I
4.20175 + 4.96532I 9.50591 5.64619I
u = 0.366415 + 0.805565I
a = 1.17167 + 1.18416I
b = 0.184920 0.596372I
10.50330 + 1.42992I 3.65523 2.00550I
u = 0.366415 0.805565I
a = 1.17167 1.18416I
b = 0.184920 + 0.596372I
10.50330 1.42992I 3.65523 + 2.00550I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.336222 + 0.803215I
a = 0.87556 1.36537I
b = 0.137852 + 0.789514I
10.34730 5.08751I 3.92984 + 2.90656I
u = 0.336222 0.803215I
a = 0.87556 + 1.36537I
b = 0.137852 0.789514I
10.34730 + 5.08751I 3.92984 2.90656I
u = 0.880758 + 0.714367I
a = 0.556508 0.593812I
b = 0.762556 0.329885I
2.31973 + 2.73395I 60.10 0.676902I
u = 0.880758 0.714367I
a = 0.556508 + 0.593812I
b = 0.762556 + 0.329885I
2.31973 2.73395I 60.10 + 0.676902I
u = 0.696228 + 0.511765I
a = 0.02775 + 1.48585I
b = 0.840769 0.158612I
4.36673 + 1.08082I 8.65197 + 0.09587I
u = 0.696228 0.511765I
a = 0.02775 1.48585I
b = 0.840769 + 0.158612I
4.36673 1.08082I 8.65197 0.09587I
u = 1.040760 + 0.477829I
a = 0.022096 + 0.260934I
b = 1.60902 + 0.01527I
8.01455 + 9.71739I 7.98988 8.06760I
u = 1.040760 0.477829I
a = 0.022096 0.260934I
b = 1.60902 0.01527I
8.01455 9.71739I 7.98988 + 8.06760I
u = 1.035350 + 0.498737I
a = 0.036384 0.448348I
b = 1.46608 0.47696I
8.29415 + 3.29720I 7.24610 3.17160I
u = 1.035350 0.498737I
a = 0.036384 + 0.448348I
b = 1.46608 + 0.47696I
8.29415 3.29720I 7.24610 + 3.17160I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.751107 + 0.340936I
a = 1.07827 + 0.93654I
b = 1.136920 + 0.261943I
1.87399 + 1.33150I 14.6087 4.8388I
u = 0.751107 0.340936I
a = 1.07827 0.93654I
b = 1.136920 0.261943I
1.87399 1.33150I 14.6087 + 4.8388I
u = 0.864737 + 0.816422I
a = 1.00270 1.60989I
b = 0.28591 2.01649I
4.36673 + 1.08082I 8.65197 + 0.I
u = 0.864737 0.816422I
a = 1.00270 + 1.60989I
b = 0.28591 + 2.01649I
4.36673 1.08082I 8.65197 + 0.I
u = 0.917877 + 0.800067I
a = 1.77023 + 0.64969I
b = 1.31308 + 1.88984I
4.20175 + 4.96532I 12.00000 5.64619I
u = 0.917877 0.800067I
a = 1.77023 0.64969I
b = 1.31308 1.88984I
4.20175 4.96532I 12.00000 + 5.64619I
u = 0.871124 + 0.885192I
a = 1.28643 + 0.63717I
b = 0.88470 + 1.89792I
8.29415 + 3.29720I 12.00000 + 0.I
u = 0.871124 0.885192I
a = 1.28643 0.63717I
b = 0.88470 1.89792I
8.29415 3.29720I 12.00000 + 0.I
u = 0.913300 + 0.855274I
a = 0.195582 0.163086I
b = 0.346423 + 0.202860I
5.18079 3.17559I 12.00000 + 0.I
u = 0.913300 0.855274I
a = 0.195582 + 0.163086I
b = 0.346423 0.202860I
5.18079 + 3.17559I 12.00000 + 0.I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.845587 + 0.935523I
a = 3.03496 + 1.05311I
b = 1.18613 + 3.70268I
17.5794 + 7.6165I 12.00000 + 0.I
u = 0.845587 0.935523I
a = 3.03496 1.05311I
b = 1.18613 3.70268I
17.5794 7.6165I 12.00000 + 0.I
u = 0.898811 + 0.892925I
a = 1.169680 + 0.302901I
b = 1.61570 1.19571I
10.50330 1.42992I 12.00000 + 0.I
u = 0.898811 0.892925I
a = 1.169680 0.302901I
b = 1.61570 + 1.19571I
10.50330 + 1.42992I 12.00000 + 0.I
u = 0.917895 + 0.882530I
a = 3.01654 2.45632I
b = 0.32556 5.04361I
12.4555 0
u = 0.917895 0.882530I
a = 3.01654 + 2.45632I
b = 0.32556 + 5.04361I
12.4555 0
u = 0.959444 + 0.848413I
a = 1.18514 1.34955I
b = 0.10952 1.97053I
8.01455 9.71739I 0
u = 0.959444 0.848413I
a = 1.18514 + 1.34955I
b = 0.10952 + 1.97053I
8.01455 + 9.71739I 0
u = 0.947556 + 0.870745I
a = 0.33672 + 1.44236I
b = 1.26760 + 1.29298I
10.34730 5.08751I 0
u = 0.947556 0.870745I
a = 0.33672 1.44236I
b = 1.26760 1.29298I
10.34730 + 5.08751I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.998762 + 0.865177I
a = 1.62848 + 2.70839I
b = 0.93674 + 4.41906I
17.5794 7.6165I 0
u = 0.998762 0.865177I
a = 1.62848 2.70839I
b = 0.93674 4.41906I
17.5794 + 7.6165I 0
u = 0.304534 + 0.542389I
a = 0.125842 + 0.286126I
b = 0.557583 + 0.600347I
1.74731 2.75249I 5.85663 + 4.25990I
u = 0.304534 0.542389I
a = 0.125842 0.286126I
b = 0.557583 0.600347I
1.74731 + 2.75249I 5.85663 4.25990I
u = 0.579212
a = 0.784912
b = 0.245364
0.838576 11.3810
u = 0.551506 + 0.061917I
a = 0.27580 + 2.18978I
b = 0.36476 + 1.51138I
2.31973 2.73395I 0.279102 + 0.676902I
u = 0.551506 0.061917I
a = 0.27580 2.18978I
b = 0.36476 1.51138I
2.31973 + 2.73395I 0.279102 0.676902I
u = 0.273323
a = 1.80982
b = 0.373488
0.838576 11.3810
14
III. I
u
3
= hb + u, a + u, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
2
u + 1
a
5
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
4
=
1
u
2
a
10
=
u
u
a
9
=
1
u
2
a
8
=
1
u
2
a
12
=
0
u
a
11
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
c
10
u
3
u
2
+ 2u 1
c
2
, c
7
u
3
+ u
2
1
c
3
, c
8
u
3
c
5
, c
11
u
3
u
2
+ 1
c
6
, c
12
u
3
+ u
2
+ 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
7
c
11
y
3
y
2
+ 2y 1
c
3
, c
8
y
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 0.744862I
b = 0.877439 0.744862I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.877439 0.744862I
a = 0.877439 + 0.744862I
b = 0.877439 + 0.744862I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.754878
a = 0.754878
b = 0.754878
2.22691 18.0390
18
IV. I
u
4
= hb a, u
2
a + a
2
+ u
2
+ 2u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
2
u + 1
a
5
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
4
=
1
u
2
a
10
=
a
a
a
9
=
u
2
a + au
au
a
8
=
u
2
a + au
au
a
12
=
u
2
a + a + u + 2
u
2
a + a + 2
a
11
=
2u
2
a au + a + 1
u
2
a au + a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
a + au u
2
8a 19
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
c
10
(u
3
u
2
+ 2u 1)
2
c
2
, c
7
(u
3
+ u
2
1)
2
c
3
, c
8
u
6
c
5
, c
11
(u
3
u
2
+ 1)
2
c
6
, c
12
(u
3
+ u
2
+ 2u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
7
c
11
(y
3
y
2
+ 2y 1)
2
c
3
, c
8
y
6
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.592519 + 0.986732I
b = 0.592519 + 0.986732I
6.04826 5.39114 + 0.I
u = 0.877439 + 0.744862I
a = 0.377439 + 0.320410I
b = 0.377439 + 0.320410I
1.91067 + 2.82812I 18.8044 4.6518I
u = 0.877439 0.744862I
a = 0.592519 0.986732I
b = 0.592519 0.986732I
6.04826 5.39114 + 0.I
u = 0.877439 0.744862I
a = 0.377439 0.320410I
b = 0.377439 0.320410I
1.91067 2.82812I 18.8044 + 4.6518I
u = 0.754878
a = 0.28492 + 1.73159I
b = 0.28492 + 1.73159I
1.91067 + 2.82812I 18.8044 4.6518I
u = 0.754878
a = 0.28492 1.73159I
b = 0.28492 1.73159I
1.91067 2.82812I 18.8044 + 4.6518I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
9
c
10
((u
3
u
2
+ 2u 1)
3
)(u
13
+ 3u
12
+ ··· + 8u + 1)
· (u
48
+ 11u
47
+ ··· + 28u + 1)
c
2
, c
7
((u
3
+ u
2
1)
3
)(u
13
+ u
12
+ ··· + 2u + 1)(u
48
+ 3u
47
+ ··· + 2u + 1)
c
3
, c
8
u
9
(u
13
7u
12
+ ··· 24u + 8)(u
24
+ 3u
23
+ ··· + 20u + 8)
2
c
5
, c
11
((u
3
u
2
+ 1)
3
)(u
13
+ u
12
+ ··· + 2u + 1)(u
48
+ 3u
47
+ ··· + 2u + 1)
c
6
, c
12
((u
3
+ u
2
+ 2u + 1)
3
)(u
13
+ 3u
12
+ ··· + 8u + 1)
· (u
48
+ 11u
47
+ ··· + 28u + 1)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
, c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
13
+ 17y
12
+ ··· + 16y 1)
· (y
48
+ 53y
47
+ ··· 188y + 1)
c
2
, c
5
, c
7
c
11
((y
3
y
2
+ 2y 1)
3
)(y
13
3y
12
+ ··· + 8y 1)
· (y
48
11y
47
+ ··· 28y + 1)
c
3
, c
8
y
9
(y
13
+ 7y
12
+ ··· + 128y 64)(y
24
+ 21y
23
+ ··· + 496y + 64)
2
24