12a
0347
(K12a
0347
)
A knot diagram
1
Linearized knot diagam
3 6 9 7 2 10 12 11 1 5 8 4
Solving Sequence
7,12 5,8
4 1 11 9 3 10 6 2
c
7
c
4
c
12
c
11
c
8
c
3
c
10
c
6
c
2
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.99189 × 10
50
u
63
+ 7.06651 × 10
51
u
62
+ ··· + 5.23150 × 10
51
b + 4.68036 × 10
51
,
3.28198 × 10
51
u
63
3.59525 × 10
52
u
62
+ ··· + 1.04630 × 10
52
a + 6.79922 × 10
51
, u
64
11u
63
+ ··· 7u + 2i
I
u
2
= hu
40
a 23u
40
+ ··· 2a 351, u
40
a + u
40
+ ··· + 2a
2
+ 12a, u
41
+ 9u
40
+ ··· 2u 2i
I
u
3
= hu
22
+ 8u
21
+ ··· + b + 5, 5u
24
40u
23
+ ··· + 3a 28, u
25
+ 8u
24
+ ··· + 32u + 3i
I
u
4
= hau + 3b 2a + u + 1, 2a
2
au + 2a + 5, u
2
+ 2i
I
v
1
= ha, b + v, v
2
v + 1i
* 5 irreducible components of dim
C
= 0, with total 177 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.99 × 10
50
u
63
+ 7.07 × 10
51
u
62
+ · · · + 5.23 × 10
51
b + 4.68 ×
10
51
, 3.28 × 10
51
u
63
3.60 × 10
52
u
62
+ · · · + 1.05 × 10
52
a + 6.80 ×
10
51
, u
64
11u
63
+ · · · 7u + 2i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
5
=
0.313675u
63
+ 3.43616u
62
+ ··· 0.979049u 0.649835
0.133650u
63
1.35076u
62
+ ··· + 2.88646u 0.894649
a
8
=
1
u
2
a
4
=
0.447325u
63
+ 4.78692u
62
+ ··· 3.86551u + 0.244814
0.133650u
63
1.35076u
62
+ ··· + 2.88646u 0.894649
a
1
=
1.67303u
63
17.6572u
62
+ ··· + 0.940447u 3.11259
0.746060u
63
+ 8.24220u
62
+ ··· 7.59861u + 3.34606
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
3
=
0.113300u
63
+ 1.19153u
62
+ ··· 2.35850u + 0.200252
0.0119472u
63
0.0387449u
62
+ ··· + 0.388066u + 0.0571673
a
10
=
0.313673u
63
3.54242u
62
+ ··· 17.1019u + 2.42950
0.107084u
63
1.16286u
62
+ ··· 2.46244u + 0.413177
a
6
=
0.321571u
63
+ 3.42748u
62
+ ··· + 30.6898u 2.41310
0.0791778u
63
0.868562u
62
+ ··· + 4.62645u 0.699356
a
2
=
0.300016u
63
3.26751u
62
+ ··· 28.0092u + 2.98991
0.0356783u
63
+ 0.359671u
62
+ ··· 3.75000u + 0.585720
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.29495u
63
+ 46.7201u
62
+ ··· 27.3846u 3.10996
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
64
+ 26u
63
+ ··· + 5617u + 576
c
2
, c
5
u
64
+ 14u
63
+ ··· + 247u + 24
c
3
, c
10
u
64
+ 4u
62
+ ··· 60u + 8
c
4
, c
12
u
64
+ 4u
63
+ ··· 8u + 1
c
6
, c
9
u
64
u
63
+ ··· + 8u + 3
c
7
, c
8
, c
11
u
64
+ 11u
63
+ ··· + 7u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
64
+ 26y
63
+ ··· + 2583071y + 331776
c
2
, c
5
y
64
26y
63
+ ··· 5617y + 576
c
3
, c
10
y
64
+ 8y
63
+ ··· 784y + 64
c
4
, c
12
y
64
+ 52y
63
+ ··· + 84y + 1
c
6
, c
9
y
64
21y
63
+ ··· 406y + 9
c
7
, c
8
, c
11
y
64
+ 61y
63
+ ··· 101y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.874586 + 0.463761I
a = 0.476193 + 0.497848I
b = 0.78291 + 1.18416I
0.1569 + 15.1946I 0
u = 0.874586 0.463761I
a = 0.476193 0.497848I
b = 0.78291 1.18416I
0.1569 15.1946I 0
u = 0.134967 + 0.969394I
a = 0.716869 0.325913I
b = 0.493479 + 0.152045I
0.52369 1.36537I 0
u = 0.134967 0.969394I
a = 0.716869 + 0.325913I
b = 0.493479 0.152045I
0.52369 + 1.36537I 0
u = 0.850863 + 0.422917I
a = 0.512533 0.435812I
b = 0.78408 1.19047I
1.85492 + 9.31414I 0
u = 0.850863 0.422917I
a = 0.512533 + 0.435812I
b = 0.78408 + 1.19047I
1.85492 9.31414I 0
u = 0.709244 + 0.777818I
a = 0.806471 + 0.011283I
b = 0.453682 + 0.916244I
0.81096 3.99682I 0
u = 0.709244 0.777818I
a = 0.806471 0.011283I
b = 0.453682 0.916244I
0.81096 + 3.99682I 0
u = 0.735026 + 0.753807I
a = 0.115505 + 0.397307I
b = 0.024188 + 0.229007I
1.58932 0.39154I 0
u = 0.735026 0.753807I
a = 0.115505 0.397307I
b = 0.024188 0.229007I
1.58932 + 0.39154I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.788162 + 0.760204I
a = 0.744165 0.029302I
b = 0.455272 0.927701I
0.67770 9.59565I 0
u = 0.788162 0.760204I
a = 0.744165 + 0.029302I
b = 0.455272 + 0.927701I
0.67770 + 9.59565I 0
u = 0.440914 + 1.021510I
a = 0.242910 0.322440I
b = 0.236295 0.093976I
0.66096 1.51732I 0
u = 0.440914 1.021510I
a = 0.242910 + 0.322440I
b = 0.236295 + 0.093976I
0.66096 + 1.51732I 0
u = 0.696005 + 0.540499I
a = 0.702429 + 0.180538I
b = 0.400897 0.949464I
5.18239 2.82741I 0
u = 0.696005 0.540499I
a = 0.702429 0.180538I
b = 0.400897 + 0.949464I
5.18239 + 2.82741I 0
u = 0.723846 + 0.467849I
a = 0.719138 + 0.533500I
b = 0.79941 + 1.17427I
4.95307 + 7.52151I 0
u = 0.723846 0.467849I
a = 0.719138 0.533500I
b = 0.79941 1.17427I
4.95307 7.52151I 0
u = 0.739683 + 0.881622I
a = 0.049686 0.386731I
b = 0.062673 0.221372I
1.22982 5.09618I 0
u = 0.739683 0.881622I
a = 0.049686 + 0.386731I
b = 0.062673 + 0.221372I
1.22982 + 5.09618I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.722796 + 0.102347I
a = 0.064511 + 0.695991I
b = 0.003282 + 0.295639I
2.14767 2.42621I 3.53989 + 3.29368I
u = 0.722796 0.102347I
a = 0.064511 0.695991I
b = 0.003282 0.295639I
2.14767 + 2.42621I 3.53989 3.29368I
u = 0.661440 + 0.269912I
a = 0.917801 0.108418I
b = 0.89574 1.23400I
0.94406 + 4.53969I 0. 14.5295I
u = 0.661440 0.269912I
a = 0.917801 + 0.108418I
b = 0.89574 + 1.23400I
0.94406 4.53969I 0. + 14.5295I
u = 0.679870 + 0.076087I
a = 0.093571 + 0.624963I
b = 0.256092 1.288630I
0.92471 + 3.02354I 8.64857 7.07719I
u = 0.679870 0.076087I
a = 0.093571 0.624963I
b = 0.256092 + 1.288630I
0.92471 3.02354I 8.64857 + 7.07719I
u = 0.268005 + 1.298910I
a = 0.302259 + 0.714643I
b = 0.467658 + 0.320477I
2.20651 5.99017I 0
u = 0.268005 1.298910I
a = 0.302259 0.714643I
b = 0.467658 0.320477I
2.20651 + 5.99017I 0
u = 0.034395 + 1.366090I
a = 0.30955 + 1.70708I
b = 0.593741 + 1.249710I
6.03768 + 1.44933I 0
u = 0.034395 1.366090I
a = 0.30955 1.70708I
b = 0.593741 1.249710I
6.03768 1.44933I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.157239 + 0.608409I
a = 1.143040 0.086657I
b = 0.300221 + 0.624616I
0.561743 1.227990I 3.53833 + 4.98452I
u = 0.157239 0.608409I
a = 1.143040 + 0.086657I
b = 0.300221 0.624616I
0.561743 + 1.227990I 3.53833 4.98452I
u = 0.241711 + 1.354500I
a = 0.77684 + 1.53237I
b = 0.32898 + 1.48682I
5.06349 + 0.11632I 0
u = 0.241711 1.354500I
a = 0.77684 1.53237I
b = 0.32898 1.48682I
5.06349 0.11632I 0
u = 0.306940 + 1.366480I
a = 1.14500 1.25058I
b = 0.07904 1.54786I
5.55346 + 6.70378I 0
u = 0.306940 1.366480I
a = 1.14500 + 1.25058I
b = 0.07904 + 1.54786I
5.55346 6.70378I 0
u = 0.059218 + 1.403030I
a = 0.23543 1.74553I
b = 0.637721 1.254150I
6.56627 2.85756I 0
u = 0.059218 1.403030I
a = 0.23543 + 1.74553I
b = 0.637721 + 1.254150I
6.56627 + 2.85756I 0
u = 0.144268 + 1.398570I
a = 0.38334 + 2.17822I
b = 1.39453 + 1.28541I
7.67530 + 1.01817I 0
u = 0.144268 1.398570I
a = 0.38334 2.17822I
b = 1.39453 1.28541I
7.67530 1.01817I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.25341 + 1.41328I
a = 0.28026 2.17866I
b = 1.00687 1.69702I
4.44780 + 7.86984I 0
u = 0.25341 1.41328I
a = 0.28026 + 2.17866I
b = 1.00687 + 1.69702I
4.44780 7.86984I 0
u = 0.01743 + 1.45361I
a = 0.08383 1.68567I
b = 0.721594 1.179600I
7.56672 + 1.96899I 0
u = 0.01743 1.45361I
a = 0.08383 + 1.68567I
b = 0.721594 + 1.179600I
7.56672 1.96899I 0
u = 0.01724 + 1.45371I
a = 0.142654 + 1.399870I
b = 0.563785 + 1.020420I
6.78319 0.76865I 0
u = 0.01724 1.45371I
a = 0.142654 1.399870I
b = 0.563785 1.020420I
6.78319 + 0.76865I 0
u = 0.26333 + 1.49598I
a = 0.11458 + 1.96767I
b = 0.97438 + 1.50802I
11.3104 + 11.1323I 0
u = 0.26333 1.49598I
a = 0.11458 1.96767I
b = 0.97438 1.50802I
11.3104 11.1323I 0
u = 0.335524 + 0.328284I
a = 1.68394 + 0.68354I
b = 0.761604 + 0.863069I
2.21510 0.83970I 11.15859 + 0.95683I
u = 0.335524 0.328284I
a = 1.68394 0.68354I
b = 0.761604 0.863069I
2.21510 + 0.83970I 11.15859 0.95683I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31619 + 1.49846I
a = 0.16485 1.89226I
b = 0.92185 1.50636I
4.3452 + 13.5483I 0
u = 0.31619 1.49846I
a = 0.16485 + 1.89226I
b = 0.92185 + 1.50636I
4.3452 13.5483I 0
u = 0.32072 + 1.51879I
a = 0.14001 + 1.87382I
b = 0.92245 + 1.49081I
6.2511 + 19.5398I 0
u = 0.32072 1.51879I
a = 0.14001 1.87382I
b = 0.92245 1.49081I
6.2511 19.5398I 0
u = 0.21935 + 1.53725I
a = 0.564830 1.084320I
b = 0.144261 1.091660I
12.04140 + 0.55096I 0
u = 0.21935 1.53725I
a = 0.564830 + 1.084320I
b = 0.144261 + 1.091660I
12.04140 0.55096I 0
u = 0.10218 + 1.55806I
a = 0.358935 + 1.114100I
b = 0.277530 + 0.977718I
7.36626 1.42331I 0
u = 0.10218 1.55806I
a = 0.358935 1.114100I
b = 0.277530 0.977718I
7.36626 + 1.42331I 0
u = 0.12566 + 1.62075I
a = 0.382955 1.012810I
b = 0.199811 0.934705I
9.07622 6.32501I 0
u = 0.12566 1.62075I
a = 0.382955 + 1.012810I
b = 0.199811 + 0.934705I
9.07622 + 6.32501I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.014952 + 0.260009I
a = 3.44771 1.44981I
b = 0.187548 0.937540I
1.81865 + 2.11391I 8.57768 4.29143I
u = 0.014952 0.260009I
a = 3.44771 + 1.44981I
b = 0.187548 + 0.937540I
1.81865 2.11391I 8.57768 + 4.29143I
u = 0.150277 + 0.053346I
a = 2.05049 7.58298I
b = 0.033361 1.087320I
1.60253 2.06668I 7.92019 + 3.31024I
u = 0.150277 0.053346I
a = 2.05049 + 7.58298I
b = 0.033361 + 1.087320I
1.60253 + 2.06668I 7.92019 3.31024I
11
II. I
u
2
=
hu
40
a23u
40
+· · ·−2a 351, u
40
a+u
40
+· · ·+2a
2
+12a, u
41
+9u
40
+· · ·−2u2i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
5
=
a
0.00251889au
40
+ 0.0579345u
40
+ ··· + 0.00503778a + 0.884131
a
8
=
1
u
2
a
4
=
0.00251889au
40
0.0579345u
40
+ ··· + 0.994962a 0.884131
0.00251889au
40
+ 0.0579345u
40
+ ··· + 0.00503778a + 0.884131
a
1
=
0.0579345au
40
0.167506u
40
+ ··· 0.884131a + 0.335013
1
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
3
=
0.00755668au
40
+ 0.826196u
40
+ ··· + 0.984887a + 0.347607
0.0100756au
40
+ 0.231738u
40
+ ··· + 0.0201511a + 0.536524
a
10
=
0.942065au
40
+ 0.167506u
40
+ ··· + 0.884131a 1.33501
0.173804au
40
+ 0.00251889u
40
+ ··· + 1.65239a + 0.994962
a
6
=
0.231738au
40
0.170025u
40
+ ··· 0.536524a + 0.340050
0.478589au
40
+ 0.00755668u
40
+ ··· + 0.957179a 1.01511
a
2
=
0.362720au
40
0.157431u
40
+ ··· + 0.725441a + 0.314861
0.0730479au
40
+ 0.319899u
40
+ ··· 0.146096a 0.639798
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
40
9u
39
+ ··· + 60u + 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
41
+ 18u
40
+ ··· + 8u + 1)
2
c
2
, c
5
(u
41
4u
40
+ ··· 8u + 1)
2
c
3
, c
10
u
82
2u
81
+ ··· + 585u 107
c
4
, c
12
u
82
+ 10u
81
+ ··· + 3081u + 397
c
6
, c
9
u
82
+ 3u
81
+ ··· + 14u 1
c
7
, c
8
, c
11
(u
41
9u
40
+ ··· 2u + 2)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
41
+ 14y
40
+ ··· 64y 1)
2
c
2
, c
5
(y
41
18y
40
+ ··· + 8y 1)
2
c
3
, c
10
y
82
6y
81
+ ··· 1905495y + 11449
c
4
, c
12
y
82
6y
81
+ ··· + 7892863y + 157609
c
6
, c
9
y
82
+ 29y
81
+ ··· + 102y + 1
c
7
, c
8
, c
11
(y
41
+ 41y
40
+ ··· + 68y 4)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.895003 + 0.498727I
a = 0.228170 + 0.653764I
b = 0.364274 + 0.745503I
1.95527 0.57118I 6.04148 + 0.I
u = 0.895003 + 0.498727I
a = 0.180264 + 0.084965I
b = 0.484487 0.377574I
1.95527 0.57118I 6.04148 + 0.I
u = 0.895003 0.498727I
a = 0.228170 0.653764I
b = 0.364274 0.745503I
1.95527 + 0.57118I 6.04148 + 0.I
u = 0.895003 0.498727I
a = 0.180264 0.084965I
b = 0.484487 + 0.377574I
1.95527 + 0.57118I 6.04148 + 0.I
u = 0.886395 + 0.578180I
a = 0.301896 0.711282I
b = 0.362364 0.753908I
1.72494 5.25730I 0. + 10.31079I
u = 0.886395 + 0.578180I
a = 0.1118320 + 0.0122452I
b = 0.564151 + 0.421846I
1.72494 5.25730I 0. + 10.31079I
u = 0.886395 0.578180I
a = 0.301896 + 0.711282I
b = 0.362364 + 0.753908I
1.72494 + 5.25730I 0. 10.31079I
u = 0.886395 0.578180I
a = 0.1118320 0.0122452I
b = 0.564151 0.421846I
1.72494 + 5.25730I 0. 10.31079I
u = 0.419922 + 0.819685I
a = 0.014090 0.384363I
b = 0.885747 0.743602I
0.98956 6.71493I 5.68486 + 9.93728I
u = 0.419922 + 0.819685I
a = 1.08553 + 1.35316I
b = 0.071565 + 0.865337I
0.98956 6.71493I 5.68486 + 9.93728I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.419922 0.819685I
a = 0.014090 + 0.384363I
b = 0.885747 + 0.743602I
0.98956 + 6.71493I 5.68486 9.93728I
u = 0.419922 0.819685I
a = 1.08553 1.35316I
b = 0.071565 0.865337I
0.98956 + 6.71493I 5.68486 9.93728I
u = 0.611668 + 0.673550I
a = 0.897282 0.800935I
b = 0.202337 0.749422I
0.11262 2.09272I 3.43576 + 6.46528I
u = 0.611668 + 0.673550I
a = 0.051980 + 0.320022I
b = 0.707298 + 0.709139I
0.11262 2.09272I 3.43576 + 6.46528I
u = 0.611668 0.673550I
a = 0.897282 + 0.800935I
b = 0.202337 + 0.749422I
0.11262 + 2.09272I 3.43576 6.46528I
u = 0.611668 0.673550I
a = 0.051980 0.320022I
b = 0.707298 0.709139I
0.11262 + 2.09272I 3.43576 6.46528I
u = 0.010846 + 1.176660I
a = 0.220167 0.103332I
b = 1.194090 0.448882I
0.81120 6.28000I 0
u = 0.010846 + 1.176660I
a = 0.78926 + 2.16046I
b = 0.417158 + 1.142220I
0.81120 6.28000I 0
u = 0.010846 1.176660I
a = 0.220167 + 0.103332I
b = 1.194090 + 0.448882I
0.81120 + 6.28000I 0
u = 0.010846 1.176660I
a = 0.78926 2.16046I
b = 0.417158 1.142220I
0.81120 + 6.28000I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.818516 + 0.080588I
a = 0.136568 + 0.739988I
b = 0.072690 0.231754I
2.05960 2.48926I 5.05170 + 3.34988I
u = 0.818516 + 0.080588I
a = 0.022594 + 0.540489I
b = 0.092970 + 0.812250I
2.05960 2.48926I 5.05170 + 3.34988I
u = 0.818516 0.080588I
a = 0.136568 0.739988I
b = 0.072690 + 0.231754I
2.05960 + 2.48926I 5.05170 3.34988I
u = 0.818516 0.080588I
a = 0.022594 0.540489I
b = 0.092970 0.812250I
2.05960 + 2.48926I 5.05170 3.34988I
u = 0.639274 + 0.516374I
a = 0.896282 0.287979I
b = 0.226609 0.614971I
0.01587 2.19785I 4.62987 + 3.78431I
u = 0.639274 + 0.516374I
a = 0.135764 + 0.379991I
b = 0.548985 + 0.788868I
0.01587 2.19785I 4.62987 + 3.78431I
u = 0.639274 0.516374I
a = 0.896282 + 0.287979I
b = 0.226609 + 0.614971I
0.01587 + 2.19785I 4.62987 3.78431I
u = 0.639274 0.516374I
a = 0.135764 0.379991I
b = 0.548985 0.788868I
0.01587 + 2.19785I 4.62987 3.78431I
u = 0.060616 + 1.245240I
a = 0.478038 0.113422I
b = 1.341780 + 0.294249I
0.518741 0.467338I 0
u = 0.060616 + 1.245240I
a = 0.74342 2.13731I
b = 0.560003 1.050850I
0.518741 0.467338I 0
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.060616 1.245240I
a = 0.478038 + 0.113422I
b = 1.341780 0.294249I
0.518741 + 0.467338I 0
u = 0.060616 1.245240I
a = 0.74342 + 2.13731I
b = 0.560003 + 1.050850I
0.518741 + 0.467338I 0
u = 0.051790 + 1.355640I
a = 1.67533 + 0.89402I
b = 2.07461 + 0.45198I
6.82732 + 1.10901I 0
u = 0.051790 + 1.355640I
a = 0.22861 + 2.03380I
b = 0.619918 + 0.518382I
6.82732 + 1.10901I 0
u = 0.051790 1.355640I
a = 1.67533 0.89402I
b = 2.07461 0.45198I
6.82732 1.10901I 0
u = 0.051790 1.355640I
a = 0.22861 2.03380I
b = 0.619918 0.518382I
6.82732 1.10901I 0
u = 0.113233 + 1.355730I
a = 1.392110 + 0.006299I
b = 1.97238 + 0.29182I
0.56183 + 4.07949I 0
u = 0.113233 + 1.355730I
a = 0.54589 2.21697I
b = 0.452801 0.754352I
0.56183 + 4.07949I 0
u = 0.113233 1.355730I
a = 1.392110 0.006299I
b = 1.97238 0.29182I
0.56183 4.07949I 0
u = 0.113233 1.355730I
a = 0.54589 + 2.21697I
b = 0.452801 + 0.754352I
0.56183 4.07949I 0
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.121620 + 1.382840I
a = 1.54321 0.21411I
b = 2.09745 0.43998I
2.70065 + 9.94272I 0
u = 0.121620 + 1.382840I
a = 0.56310 + 2.27185I
b = 0.379745 + 0.738954I
2.70065 + 9.94272I 0
u = 0.121620 1.382840I
a = 1.54321 + 0.21411I
b = 2.09745 + 0.43998I
2.70065 9.94272I 0
u = 0.121620 1.382840I
a = 0.56310 2.27185I
b = 0.379745 0.738954I
2.70065 9.94272I 0
u = 0.11243 + 1.47381I
a = 0.94793 + 1.14508I
b = 0.448256 + 0.644032I
9.88760 1.87876I 0
u = 0.11243 + 1.47381I
a = 0.43790 2.27062I
b = 0.89542 2.00137I
9.88760 1.87876I 0
u = 0.11243 1.47381I
a = 0.94793 1.14508I
b = 0.448256 0.644032I
9.88760 + 1.87876I 0
u = 0.11243 1.47381I
a = 0.43790 + 2.27062I
b = 0.89542 + 2.00137I
9.88760 + 1.87876I 0
u = 0.19812 + 1.48876I
a = 0.474902 1.143990I
b = 0.596565 0.804826I
6.49780 5.13988I 0
u = 0.19812 + 1.48876I
a = 0.13362 + 1.85101I
b = 0.71721 + 1.52796I
6.49780 5.13988I 0
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.19812 1.48876I
a = 0.474902 + 1.143990I
b = 0.596565 + 0.804826I
6.49780 + 5.13988I 0
u = 0.19812 1.48876I
a = 0.13362 1.85101I
b = 0.71721 1.52796I
6.49780 + 5.13988I 0
u = 0.32440 + 1.49994I
a = 0.053639 0.997050I
b = 0.898273 0.879292I
4.41110 4.99632I 0
u = 0.32440 + 1.49994I
a = 0.23313 + 1.67970I
b = 0.450628 + 1.228700I
4.41110 4.99632I 0
u = 0.32440 1.49994I
a = 0.053639 + 0.997050I
b = 0.898273 + 0.879292I
4.41110 + 4.99632I 0
u = 0.32440 1.49994I
a = 0.23313 1.67970I
b = 0.450628 1.228700I
4.41110 + 4.99632I 0
u = 0.427131 + 0.126572I
a = 0.850674 1.066150I
b = 1.32158 0.58582I
2.16617 + 8.04413I 3.23482 9.57385I
u = 0.427131 + 0.126572I
a = 1.60367 + 2.58379I
b = 0.867044 + 0.480110I
2.16617 + 8.04413I 3.23482 9.57385I
u = 0.427131 0.126572I
a = 0.850674 + 1.066150I
b = 1.32158 + 0.58582I
2.16617 8.04413I 3.23482 + 9.57385I
u = 0.427131 0.126572I
a = 1.60367 2.58379I
b = 0.867044 0.480110I
2.16617 8.04413I 3.23482 + 9.57385I
20
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.219482 + 0.374158I
a = 0.077285 0.434566I
b = 0.90234 1.26494I
3.72236 0.49265I 14.4012 + 8.8169I
u = 0.219482 + 0.374158I
a = 3.66345 + 0.86758I
b = 0.095682 + 0.548786I
3.72236 0.49265I 14.4012 + 8.8169I
u = 0.219482 0.374158I
a = 0.077285 + 0.434566I
b = 0.90234 + 1.26494I
3.72236 + 0.49265I 14.4012 8.8169I
u = 0.219482 0.374158I
a = 3.66345 0.86758I
b = 0.095682 0.548786I
3.72236 + 0.49265I 14.4012 8.8169I
u = 0.16366 + 1.55976I
a = 0.57780 + 1.45391I
b = 0.425868 + 0.876727I
8.69063 9.00195I 0
u = 0.16366 + 1.55976I
a = 0.48022 1.68275I
b = 1.06453 1.47103I
8.69063 9.00195I 0
u = 0.16366 1.55976I
a = 0.57780 1.45391I
b = 0.425868 0.876727I
8.69063 + 9.00195I 0
u = 0.16366 1.55976I
a = 0.48022 + 1.68275I
b = 1.06453 + 1.47103I
8.69063 + 9.00195I 0
u = 0.423290 + 0.074566I
a = 1.08364 + 1.12062I
b = 1.267640 + 0.504067I
3.99395 + 2.22617I 7.06416 3.62614I
u = 0.423290 + 0.074566I
a = 1.75182 2.10296I
b = 0.949298 0.436305I
3.99395 + 2.22617I 7.06416 3.62614I
21
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.423290 0.074566I
a = 1.08364 1.12062I
b = 1.267640 0.504067I
3.99395 2.22617I 7.06416 + 3.62614I
u = 0.423290 0.074566I
a = 1.75182 + 2.10296I
b = 0.949298 + 0.436305I
3.99395 2.22617I 7.06416 + 3.62614I
u = 0.32810 + 1.54346I
a = 0.169998 + 1.063150I
b = 0.956224 + 0.939190I
5.09204 9.73833I 0
u = 0.32810 + 1.54346I
a = 0.25890 1.64183I
b = 0.449285 1.172840I
5.09204 9.73833I 0
u = 0.32810 1.54346I
a = 0.169998 1.063150I
b = 0.956224 0.939190I
5.09204 + 9.73833I 0
u = 0.32810 1.54346I
a = 0.25890 + 1.64183I
b = 0.449285 + 1.172840I
5.09204 + 9.73833I 0
u = 0.24479 + 1.56149I
a = 0.22945 + 1.41041I
b = 0.92367 + 1.19156I
7.15140 5.46612I 0
u = 0.24479 + 1.56149I
a = 0.32361 1.49103I
b = 0.511679 1.030450I
7.15140 5.46612I 0
u = 0.24479 1.56149I
a = 0.22945 1.41041I
b = 0.92367 1.19156I
7.15140 + 5.46612I 0
u = 0.24479 1.56149I
a = 0.32361 + 1.49103I
b = 0.511679 + 1.030450I
7.15140 + 5.46612I 0
22
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.306458
a = 1.21310
b = 1.54542
2.52366 12.9440
u = 0.306458
a = 4.19749
b = 0.845371
2.52366 12.9440
23
III. I
u
3
=
hu
22
+8u
21
+· · ·+b+5, 5u
24
40u
23
+· · ·+3a28, u
25
+8u
24
+· · ·+32u+3i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
5
=
5
3
u
24
+
40
3
u
23
+ ··· + 50u +
28
3
u
22
8u
21
+ ··· 39u 5
a
8
=
1
u
2
a
4
=
5
3
u
24
+
40
3
u
23
+ ··· + 89u +
43
3
u
22
8u
21
+ ··· 39u 5
a
1
=
1
3
u
24
8
3
u
23
+ ··· 77u
44
3
u
23
7u
22
+ ··· 3u + 1
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
3
=
5
3
u
24
+
40
3
u
23
+ ··· + 75u +
37
3
u
23
8u
22
+ ··· 42u 5
a
10
=
1
3
u
24
8
3
u
23
+ ··· 52u
26
3
u
3
+ u
2
+ 2u + 1
a
6
=
1
3
u
24
+
8
3
u
23
+ ··· + 47u +
23
3
u
6
2u
5
5u
4
6u
3
6u
2
4u 1
a
2
=
1
3
u
24
+
8
3
u
23
+ ··· + 43u +
17
3
u
12
+ 3u
11
+ ··· 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
24
+ 22u
23
+ 109u
22
+ 388u
21
+ 1105u
20
+ 2575u
19
+ 5015u
18
+ 8151u
17
+ 10861u
16
+
11103u
15
+ 6569u
14
4034u
13
19705u
12
36760u
11
50147u
10
55645u
9
52088u
8
41626u
7
28506u
6
16633u
5
8210u
4
3352u
3
1100u
2
264u 45
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
25
11u
24
+ ··· + 181u 25
c
2
u
25
+ 5u
24
+ ··· 19u 5
c
3
, c
10
u
25
4u
23
+ ··· + 2u 1
c
4
, c
12
u
25
2u
24
+ ··· 5u
2
1
c
5
u
25
5u
24
+ ··· 19u + 5
c
6
, c
9
u
25
u
24
+ ··· 2u 1
c
7
, c
8
u
25
+ 8u
24
+ ··· + 32u + 3
c
11
u
25
8u
24
+ ··· + 32u 3
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
25
+ 9y
24
+ ··· 6839y 625
c
2
, c
5
y
25
11y
24
+ ··· + 181y 25
c
3
, c
10
y
25
8y
24
+ ··· + 6y 1
c
4
, c
12
y
25
4y
24
+ ··· 10y 1
c
6
, c
9
y
25
+ 19y
24
+ ··· 4y 1
c
7
, c
8
, c
11
y
25
+ 24y
24
+ ··· + 70y 9
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.576444 + 0.969341I
a = 0.379668 + 0.209239I
b = 0.054711 + 0.458924I
1.02619 1.43748I 16.2333 2.9546I
u = 0.576444 0.969341I
a = 0.379668 0.209239I
b = 0.054711 0.458924I
1.02619 + 1.43748I 16.2333 + 2.9546I
u = 0.931888 + 0.672170I
a = 0.264572 0.316082I
b = 0.240368 0.658525I
1.25319 0.89811I 6.98325 + 4.85594I
u = 0.931888 0.672170I
a = 0.264572 + 0.316082I
b = 0.240368 + 0.658525I
1.25319 + 0.89811I 6.98325 4.85594I
u = 0.784209 + 0.325897I
a = 0.438102 0.122877I
b = 0.442828 0.883870I
0.72959 3.41642I 1.89603 + 7.39585I
u = 0.784209 0.325897I
a = 0.438102 + 0.122877I
b = 0.442828 + 0.883870I
0.72959 + 3.41642I 1.89603 7.39585I
u = 0.891055 + 0.802899I
a = 0.267624 + 0.346611I
b = 0.200681 + 0.616389I
0.90295 5.48733I 9.1395 + 11.3352I
u = 0.891055 0.802899I
a = 0.267624 0.346611I
b = 0.200681 0.616389I
0.90295 + 5.48733I 9.1395 11.3352I
u = 0.009100 + 1.204320I
a = 1.11578 1.19339I
b = 1.241870 0.161249I
0.55437 + 2.06439I 0.56220 5.61553I
u = 0.009100 1.204320I
a = 1.11578 + 1.19339I
b = 1.241870 + 0.161249I
0.55437 2.06439I 0.56220 + 5.61553I
27
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.077572 + 1.251490I
a = 0.99205 + 1.20898I
b = 1.154850 + 0.276108I
1.60934 + 8.24258I 3.95853 7.30408I
u = 0.077572 1.251490I
a = 0.99205 1.20898I
b = 1.154850 0.276108I
1.60934 8.24258I 3.95853 + 7.30408I
u = 0.024404 + 0.675855I
a = 0.67742 1.33114I
b = 0.846931 0.084135I
2.57567 2.05291I 0.29912 + 2.44445I
u = 0.024404 0.675855I
a = 0.67742 + 1.33114I
b = 0.846931 + 0.084135I
2.57567 + 2.05291I 0.29912 2.44445I
u = 0.120437 + 1.387100I
a = 0.69250 + 1.93112I
b = 1.45966 + 0.94542I
7.68290 1.31345I 16.2154 + 12.2980I
u = 0.120437 1.387100I
a = 0.69250 1.93112I
b = 1.45966 0.94542I
7.68290 + 1.31345I 16.2154 12.2980I
u = 0.086133 + 0.537197I
a = 0.94595 + 1.72487I
b = 0.877275 + 0.102818I
1.02130 7.51968I 3.42239 + 6.83772I
u = 0.086133 0.537197I
a = 0.94595 1.72487I
b = 0.877275 0.102818I
1.02130 + 7.51968I 3.42239 6.83772I
u = 0.29046 + 1.43058I
a = 0.48507 1.62567I
b = 0.56192 1.44547I
4.88048 7.25668I 6.48725 + 7.01686I
u = 0.29046 1.43058I
a = 0.48507 + 1.62567I
b = 0.56192 + 1.44547I
4.88048 + 7.25668I 6.48725 7.01686I
28
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.19019 + 1.57688I
a = 0.124245 + 1.364400I
b = 0.776904 + 0.950431I
7.22545 8.96892I 5.89690 + 8.58792I
u = 0.19019 1.57688I
a = 0.124245 1.364400I
b = 0.776904 0.950431I
7.22545 + 8.96892I 5.89690 8.58792I
u = 0.25892 + 1.57684I
a = 0.026557 1.314760I
b = 0.662871 1.007580I
6.21776 5.03899I 3.59021 + 1.71413I
u = 0.25892 1.57684I
a = 0.026557 + 1.314760I
b = 0.662871 + 1.007580I
6.21776 + 5.03899I 3.59021 1.71413I
u = 0.209597
a = 4.39046
b = 1.16425
2.84804 18.0770
29
IV. I
u
4
= hau + 3b 2a + u + 1, 2a
2
au + 2a + 5, u
2
+ 2i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
5
=
a
1
3
au +
2
3
a
1
3
u
1
3
a
8
=
1
2
a
4
=
1
3
au +
1
3
a +
1
3
u +
1
3
1
3
au +
2
3
a
1
3
u
1
3
a
1
=
1
3
au
1
3
a +
1
6
u +
2
3
1
a
11
=
u
u
a
9
=
1
0
a
3
=
a
1
3
au +
2
3
a
1
3
u
1
3
a
10
=
1
3
au +
1
3
a
1
6
u
5
3
1
a
6
=
1
3
au +
1
3
a
1
6
u
2
3
1
a
2
=
1
3
au +
2
3
a +
1
6
u +
2
3
1
3
au +
2
3
a
1
3
u +
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
10
u
4
+ 2u
3
+ 3u
2
+ 2u + 3
c
4
, c
12
u
4
2u
3
+ 3u
2
2u + 3
c
5
, c
6
, c
9
(u + 1)
4
c
7
, c
8
, c
11
(u
2
+ 2)
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
(y 1)
4
c
3
, c
4
, c
10
c
12
y
4
+ 2y
3
+ 7y
2
+ 14y + 9
c
7
, c
8
, c
11
(y + 2)
4
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.385607 1.191790I
b = 1.15222 1.08415I
8.22467 12.0000
u = 1.414210I
a = 0.61439 + 1.89890I
b = 0.152220 + 1.084150I
8.22467 12.0000
u = 1.414210I
a = 0.385607 + 1.191790I
b = 1.15222 + 1.08415I
8.22467 12.0000
u = 1.414210I
a = 0.61439 1.89890I
b = 0.152220 1.084150I
8.22467 12.0000
33
V. I
v
1
= ha, b + v, v
2
v + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
v
0
a
5
=
0
v
a
8
=
1
0
a
4
=
v
v
a
1
=
v 1
1
a
11
=
v
0
a
9
=
1
0
a
3
=
0
v
a
10
=
v
1
a
6
=
v + 1
1
a
2
=
v 1
v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
9
(u 1)
2
c
3
, c
4
, c
10
c
12
u
2
u + 1
c
5
(u + 1)
2
c
7
, c
8
, c
11
u
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
(y 1)
2
c
3
, c
4
, c
10
c
12
y
2
+ y + 1
c
7
, c
8
, c
11
y
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
3.28987 6.00000
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
3.28987 6.00000
37
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
25
11u
24
+ ··· + 181u 25)
· ((u
41
+ 18u
40
+ ··· + 8u + 1)
2
)(u
64
+ 26u
63
+ ··· + 5617u + 576)
c
2
((u 1)
6
)(u
25
+ 5u
24
+ ··· 19u 5)(u
41
4u
40
+ ··· 8u + 1)
2
· (u
64
+ 14u
63
+ ··· + 247u + 24)
c
3
, c
10
(u
2
u + 1)(u
4
+ 2u
3
+ ··· + 2u + 3)(u
25
4u
23
+ ··· + 2u 1)
· (u
64
+ 4u
62
+ ··· 60u + 8)(u
82
2u
81
+ ··· + 585u 107)
c
4
, c
12
(u
2
u + 1)(u
4
2u
3
+ ··· 2u + 3)(u
25
2u
24
+ ··· 5u
2
1)
· (u
64
+ 4u
63
+ ··· 8u + 1)(u
82
+ 10u
81
+ ··· + 3081u + 397)
c
5
((u + 1)
6
)(u
25
5u
24
+ ··· 19u + 5)(u
41
4u
40
+ ··· 8u + 1)
2
· (u
64
+ 14u
63
+ ··· + 247u + 24)
c
6
, c
9
((u 1)
2
)(u + 1)
4
(u
25
u
24
+ ··· 2u 1)(u
64
u
63
+ ··· + 8u + 3)
· (u
82
+ 3u
81
+ ··· + 14u 1)
c
7
, c
8
u
2
(u
2
+ 2)
2
(u
25
+ 8u
24
+ ··· + 32u + 3)(u
41
9u
40
+ ··· 2u + 2)
2
· (u
64
+ 11u
63
+ ··· + 7u + 2)
c
11
u
2
(u
2
+ 2)
2
(u
25
8u
24
+ ··· + 32u 3)(u
41
9u
40
+ ··· 2u + 2)
2
· (u
64
+ 11u
63
+ ··· + 7u + 2)
38
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
25
+ 9y
24
+ ··· 6839y 625)
· (y
41
+ 14y
40
+ ··· 64y 1)
2
· (y
64
+ 26y
63
+ ··· + 2583071y + 331776)
c
2
, c
5
((y 1)
6
)(y
25
11y
24
+ ··· + 181y 25)
· ((y
41
18y
40
+ ··· + 8y 1)
2
)(y
64
26y
63
+ ··· 5617y + 576)
c
3
, c
10
(y
2
+ y + 1)(y
4
+ 2y
3
+ ··· + 14y + 9)(y
25
8y
24
+ ··· + 6y 1)
· (y
64
+ 8y
63
+ ··· 784y + 64)(y
82
6y
81
+ ··· 1905495y + 11449)
c
4
, c
12
(y
2
+ y + 1)(y
4
+ 2y
3
+ ··· + 14y + 9)(y
25
4y
24
+ ··· 10y 1)
· (y
64
+ 52y
63
+ ··· + 84y + 1)(y
82
6y
81
+ ··· + 7892863y + 157609)
c
6
, c
9
((y 1)
6
)(y
25
+ 19y
24
+ ··· 4y 1)(y
64
21y
63
+ ··· 406y + 9)
· (y
82
+ 29y
81
+ ··· + 102y + 1)
c
7
, c
8
, c
11
y
2
(y + 2)
4
(y
25
+ 24y
24
+ ··· + 70y 9)
· ((y
41
+ 41y
40
+ ··· + 68y 4)
2
)(y
64
+ 61y
63
+ ··· 101y + 4)
39