10
30
(K10a
34
)
A knot diagram
1
Linearized knot diagam
8 9 6 10 1 3 2 7 5 4
Solving Sequence
1,4
10 5 6 3 7 9 2 8
c
10
c
4
c
5
c
3
c
6
c
9
c
2
c
8
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
33
u
32
+ ··· + 3u 1i
* 1 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
33
u
32
+ · · · + 3u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
2u
u
3
+ u
a
3
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
7
=
u
11
6u
9
12u
7
8u
5
u
3
2u
u
11
+ 5u
9
+ 8u
7
+ 3u
5
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
2
=
u
13
+ 6u
11
+ 13u
9
+ 12u
7
+ 6u
5
+ 4u
3
+ u
u
15
7u
13
18u
11
19u
9
6u
7
2u
5
4u
3
+ u
a
8
=
u
26
13u
24
+ ··· + 3u
2
+ 1
u
26
+ 12u
24
+ ··· + 4u
4
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
32
+ 4u
31
64u
30
+ 56u
29
448u
28
+ 340u
27
1788u
26
+
1156u
25
4432u
24
+ 2356u
23
6940u
22
+ 2804u
21
6652u
20
+ 1616u
19
3660u
18
+
8u
17
1380u
16
364u
15
932u
14
156u
13
380u
12
360u
11
+ 224u
10
328u
9
+
40u
8
4u
7
56u
6
+ 4u
5
+ 48u
4
32u
3
12u
2
+ 20u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
33
u
32
+ ··· u + 1
c
2
u
33
+ u
32
+ ··· + u + 1
c
3
, c
6
u
33
5u
32
+ ··· 31u + 3
c
4
, c
9
, c
10
u
33
+ u
32
+ ··· + 3u + 1
c
5
u
33
u
32
+ ··· + 61u + 17
c
8
u
33
+ 15u
32
+ ··· + u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
33
+ 15y
32
+ ··· + y 1
c
2
y
33
y
32
+ ··· + 33y 1
c
3
, c
6
y
33
+ 27y
32
+ ··· + y 9
c
4
, c
9
, c
10
y
33
+ 31y
32
+ ··· + y 1
c
5
y
33
+ 11y
32
+ ··· 3011y 289
c
8
y
33
+ 7y
32
+ ··· + 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.138722 + 1.178260I
0.390154 0.572456I 8.31906 + 0.48605I
u = 0.138722 1.178260I
0.390154 + 0.572456I 8.31906 0.48605I
u = 0.679432 + 0.391507I
1.46905 8.41845I 5.65597 + 8.08731I
u = 0.679432 0.391507I
1.46905 + 8.41845I 5.65597 8.08731I
u = 0.649750 + 0.407780I
3.38108 + 3.30675I 2.44424 3.71770I
u = 0.649750 0.407780I
3.38108 3.30675I 2.44424 + 3.71770I
u = 0.552937 + 0.519363I
1.99857 + 4.30723I 4.15179 2.03529I
u = 0.552937 0.519363I
1.99857 4.30723I 4.15179 + 2.03529I
u = 0.578988 + 0.474023I
3.67259 + 0.72831I 1.49015 3.12560I
u = 0.578988 0.474023I
3.67259 0.72831I 1.49015 + 3.12560I
u = 0.214004 + 1.270020I
0.50606 + 6.56196I 6.35976 7.19745I
u = 0.214004 1.270020I
0.50606 6.56196I 6.35976 + 7.19745I
u = 0.150986 + 1.283520I
2.96939 2.39560I 2.36922 + 3.31266I
u = 0.150986 1.283520I
2.96939 + 2.39560I 2.36922 3.31266I
u = 0.596688 + 0.315979I
1.43040 1.50384I 9.59059 + 3.60616I
u = 0.596688 0.315979I
1.43040 + 1.50384I 9.59059 3.60616I
u = 0.632184 + 0.066503I
3.60742 + 3.47782I 12.61515 4.95314I
u = 0.632184 0.066503I
3.60742 3.47782I 12.61515 + 4.95314I
u = 0.036115 + 1.379920I
4.95997 2.19825I 0.55384 + 3.61625I
u = 0.036115 1.379920I
4.95997 + 2.19825I 0.55384 3.61625I
u = 0.22801 + 1.42935I
4.19152 4.53523I 6.00000 + 3.09222I
u = 0.22801 1.42935I
4.19152 + 4.53523I 6.00000 3.09222I
u = 0.24113 + 1.46019I
9.39642 + 6.56751I 0. 3.41838I
u = 0.24113 1.46019I
9.39642 6.56751I 0. + 3.41838I
u = 0.25408 + 1.45840I
7.42465 11.82880I 0. + 7.75337I
u = 0.25408 1.45840I
7.42465 + 11.82880I 0. 7.75337I
u = 0.20598 + 1.46844I
9.92249 + 3.59396I 0. 3.03909I
u = 0.20598 1.46844I
9.92249 3.59396I 0. + 3.03909I
u = 0.18821 + 1.47294I
8.40124 + 1.63491I 0
u = 0.18821 1.47294I
8.40124 1.63491I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514867
1.00604 9.72740
u = 0.216864 + 0.450093I
0.54661 1.45331I 5.02647 + 4.36257I
u = 0.216864 0.450093I
0.54661 + 1.45331I 5.02647 4.36257I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
33
u
32
+ ··· u + 1
c
2
u
33
+ u
32
+ ··· + u + 1
c
3
, c
6
u
33
5u
32
+ ··· 31u + 3
c
4
, c
9
, c
10
u
33
+ u
32
+ ··· + 3u + 1
c
5
u
33
u
32
+ ··· + 61u + 17
c
8
u
33
+ 15u
32
+ ··· + u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
33
+ 15y
32
+ ··· + y 1
c
2
y
33
y
32
+ ··· + 33y 1
c
3
, c
6
y
33
+ 27y
32
+ ··· + y 9
c
4
, c
9
, c
10
y
33
+ 31y
32
+ ··· + y 1
c
5
y
33
+ 11y
32
+ ··· 3011y 289
c
8
y
33
+ 7y
32
+ ··· + 17y 1
8