12a
0357
(K12a
0357
)
A knot diagram
1
Linearized knot diagam
3 6 9 8 2 12 5 10 4 1 7 11
Solving Sequence
4,9 1,10
11 3 2 8 5 6 7 12
c
9
c
10
c
3
c
1
c
8
c
4
c
5
c
7
c
12
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.53983 × 10
51
u
99
+ 4.05833 × 10
51
u
98
+ ··· + 2.11035 × 10
51
b 1.02725 × 10
52
,
1.15475 × 10
51
u
99
3.57142 × 10
51
u
98
+ ··· + 2.11035 × 10
51
a + 1.63343 × 10
52
, u
100
+ u
99
+ ··· 4u + 4i
I
u
2
= hu
3
+ 2b + 2a 2u, 2u
3
a + 2u
2
a u
3
+ 2a
2
+ u
2
2a + 2u 4, u
4
2u
2
+ 2i
I
v
1
= ha, b v 1, v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 110 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.54×10
51
u
99
+4.06×10
51
u
98
+· · ·+2.11×10
51
b1.03×10
52
, 1.15×
10
51
u
99
3.57×10
51
u
98
+· · ·+2.11×10
51
a+1.63×10
52
, u
100
+u
99
+· · ·4u+4i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
1
=
0.547186u
99
+ 1.69233u
98
+ ··· + 4.11499u 7.74008
0.729657u
99
1.92306u
98
+ ··· + 4.44039u + 4.86768
a
10
=
1
u
2
a
11
=
1.79863u
99
+ 1.22296u
98
+ ··· + 1.87484u 7.99017
1.88775u
99
1.11746u
98
+ ··· 10.4758u + 12.6756
a
3
=
u
u
a
2
=
0.178071u
99
+ 1.82811u
98
+ ··· + 3.57812u 7.93309
0.360542u
99
2.05883u
98
+ ··· + 4.97727u + 5.06069
a
8
=
u
2
+ 1
u
4
a
5
=
u
5
+ 2u
3
u
u
7
u
5
+ u
a
6
=
1.21054u
99
+ 0.764246u
98
+ ··· 22.5600u + 8.32879
0.674548u
99
2.17762u
98
+ ··· + 14.7440u 0.641411
a
7
=
u
8
+ 3u
6
3u
4
+ 1
u
10
2u
8
+ u
6
+ 2u
4
u
2
a
12
=
1.59623u
99
+ 0.969406u
98
+ ··· + 3.93582u 7.28650
1.46440u
99
1.22984u
98
+ ··· 9.77743u + 11.7646
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.789187u
99
6.38881u
98
+ ··· 5.66830u + 22.0670
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
100
+ 45u
99
+ ··· + 75u + 1
c
2
, c
5
u
100
+ 3u
99
+ ··· 17u + 1
c
3
, c
9
u
100
u
99
+ ··· + 4u + 4
c
4
, c
7
u
100
3u
99
+ ··· + 3612u + 748
c
6
, c
11
u
100
2u
99
+ ··· + 12u + 5
c
8
u
100
55u
99
+ ··· 80u + 16
c
10
, c
12
u
100
+ 32u
99
+ ··· + 46u + 25
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
100
+ 35y
99
+ ··· 3619y + 1
c
2
, c
5
y
100
45y
99
+ ··· 75y + 1
c
3
, c
9
y
100
55y
99
+ ··· 80y + 16
c
4
, c
7
y
100
+ 85y
99
+ ··· 21196752y + 559504
c
6
, c
11
y
100
+ 32y
99
+ ··· + 46y + 25
c
8
y
100
15y
99
+ ··· 5376y + 256
c
10
, c
12
y
100
+ 80y
99
+ ··· + 107034y + 625
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.912469 + 0.405577I
a = 1.019230 + 0.409473I
b = 0.55692 1.37489I
0.20776 + 3.79756I 0
u = 0.912469 0.405577I
a = 1.019230 0.409473I
b = 0.55692 + 1.37489I
0.20776 3.79756I 0
u = 0.841778 + 0.519872I
a = 2.00523 + 0.30647I
b = 1.66830 1.62048I
4.20715 5.65114I 0
u = 0.841778 0.519872I
a = 2.00523 0.30647I
b = 1.66830 + 1.62048I
4.20715 + 5.65114I 0
u = 0.909434 + 0.598251I
a = 2.21700 0.75018I
b = 2.31160 0.62141I
1.14788 11.04990I 0
u = 0.909434 0.598251I
a = 2.21700 + 0.75018I
b = 2.31160 + 0.62141I
1.14788 + 11.04990I 0
u = 0.892846 + 0.148332I
a = 0.874246 0.052986I
b = 0.880061 + 0.446449I
1.50372 0.38043I 6.35087 + 0.58790I
u = 0.892846 0.148332I
a = 0.874246 + 0.052986I
b = 0.880061 0.446449I
1.50372 + 0.38043I 6.35087 0.58790I
u = 0.934036 + 0.577393I
a = 1.83094 0.79317I
b = 1.93636 0.41442I
1.95982 + 5.33714I 0
u = 0.934036 0.577393I
a = 1.83094 + 0.79317I
b = 1.93636 + 0.41442I
1.95982 5.33714I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.814912 + 0.386226I
a = 2.91863 + 1.07511I
b = 1.36240 1.22807I
1.73172 3.82124I 3.99607 + 6.81813I
u = 0.814912 0.386226I
a = 2.91863 1.07511I
b = 1.36240 + 1.22807I
1.73172 + 3.82124I 3.99607 6.81813I
u = 0.610558 + 0.655440I
a = 0.29458 + 1.91836I
b = 1.14490 1.51664I
0.28832 + 6.20529I 3.10468 4.98772I
u = 0.610558 0.655440I
a = 0.29458 1.91836I
b = 1.14490 + 1.51664I
0.28832 6.20529I 3.10468 + 4.98772I
u = 1.055440 + 0.366629I
a = 1.177940 0.074014I
b = 1.014110 + 0.235891I
3.00378 1.28109I 0
u = 1.055440 0.366629I
a = 1.177940 + 0.074014I
b = 1.014110 0.235891I
3.00378 + 1.28109I 0
u = 0.763559 + 0.437417I
a = 1.122190 0.545518I
b = 0.871896 + 0.806261I
1.57401 + 1.88920I 4.68601 4.44810I
u = 0.763559 0.437417I
a = 1.122190 + 0.545518I
b = 0.871896 0.806261I
1.57401 1.88920I 4.68601 + 4.44810I
u = 0.984201 + 0.538389I
a = 1.63348 + 0.33461I
b = 1.78287 + 0.23609I
2.74500 + 6.04482I 0
u = 0.984201 0.538389I
a = 1.63348 0.33461I
b = 1.78287 0.23609I
2.74500 6.04482I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.131300 + 0.031645I
a = 0.391679 0.793695I
b = 0.398613 0.311538I
6.37271 + 0.11350I 0
u = 1.131300 0.031645I
a = 0.391679 + 0.793695I
b = 0.398613 + 0.311538I
6.37271 0.11350I 0
u = 0.781213 + 0.377020I
a = 1.19190 + 1.27616I
b = 0.50457 2.37511I
1.84014 + 0.43513I 4.52284 + 3.06310I
u = 0.781213 0.377020I
a = 1.19190 1.27616I
b = 0.50457 + 2.37511I
1.84014 0.43513I 4.52284 3.06310I
u = 0.150097 + 0.854140I
a = 1.35989 + 0.76503I
b = 0.66687 1.38476I
5.33031 + 11.95280I 1.22194 7.32364I
u = 0.150097 0.854140I
a = 1.35989 0.76503I
b = 0.66687 + 1.38476I
5.33031 11.95280I 1.22194 + 7.32364I
u = 0.128935 + 0.855015I
a = 1.244510 + 0.598650I
b = 0.741965 1.096350I
6.34419 5.84958I 0.46765 + 2.69584I
u = 0.128935 0.855015I
a = 1.244510 0.598650I
b = 0.741965 + 1.096350I
6.34419 + 5.84958I 0.46765 2.69584I
u = 0.681105 + 0.527016I
a = 1.59641 + 1.60846I
b = 0.07953 1.62701I
4.66816 + 1.38516I 10.24072 0.52045I
u = 0.681105 0.527016I
a = 1.59641 1.60846I
b = 0.07953 + 1.62701I
4.66816 1.38516I 10.24072 + 0.52045I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.097937 + 0.853235I
a = 0.842921 0.573169I
b = 0.359480 + 1.282810I
7.38468 5.80677I 1.37130 + 3.23085I
u = 0.097937 0.853235I
a = 0.842921 + 0.573169I
b = 0.359480 1.282810I
7.38468 + 5.80677I 1.37130 3.23085I
u = 0.564718 + 0.646983I
a = 0.12930 + 1.50881I
b = 1.12507 1.09493I
0.901266 0.586971I 1.67720 + 0.I
u = 0.564718 0.646983I
a = 0.12930 1.50881I
b = 1.12507 + 1.09493I
0.901266 + 0.586971I 1.67720 + 0.I
u = 1.139570 + 0.076692I
a = 0.102816 0.836460I
b = 0.238969 0.353591I
6.08791 + 5.84929I 0
u = 1.139570 0.076692I
a = 0.102816 + 0.836460I
b = 0.238969 + 0.353591I
6.08791 5.84929I 0
u = 0.069488 + 0.854881I
a = 0.807259 0.508489I
b = 0.524439 + 1.090280I
7.98792 0.33942I 2.27380 + 1.86979I
u = 0.069488 0.854881I
a = 0.807259 + 0.508489I
b = 0.524439 1.090280I
7.98792 + 0.33942I 2.27380 1.86979I
u = 1.085200 + 0.397109I
a = 0.720541 + 0.454709I
b = 0.019567 1.119010I
0.18495 + 3.60808I 0
u = 1.085200 0.397109I
a = 0.720541 0.454709I
b = 0.019567 + 1.119010I
0.18495 3.60808I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.793988 + 0.262883I
a = 2.82288 + 0.48559I
b = 1.208080 0.604939I
0.988788 0.952734I 0.15661 1.44604I
u = 0.793988 0.262883I
a = 2.82288 0.48559I
b = 1.208080 + 0.604939I
0.988788 + 0.952734I 0.15661 + 1.44604I
u = 1.041020 + 0.542940I
a = 1.36561 + 0.86394I
b = 1.81769 0.34870I
2.88537 0.64653I 0
u = 1.041020 0.542940I
a = 1.36561 0.86394I
b = 1.81769 + 0.34870I
2.88537 + 0.64653I 0
u = 1.083910 + 0.462365I
a = 0.918572 0.375609I
b = 0.937185 + 0.367758I
2.44049 + 5.71324I 0
u = 1.083910 0.462365I
a = 0.918572 + 0.375609I
b = 0.937185 0.367758I
2.44049 5.71324I 0
u = 0.426174 + 0.689734I
a = 0.33089 1.61078I
b = 1.140840 + 0.629451I
1.09924 4.09171I 1.69507 + 5.63411I
u = 0.426174 0.689734I
a = 0.33089 + 1.61078I
b = 1.140840 0.629451I
1.09924 + 4.09171I 1.69507 5.63411I
u = 0.807716 + 0.067600I
a = 0.749405 + 0.499425I
b = 1.29639 0.97122I
0.64641 + 2.78439I 1.21161 6.73563I
u = 0.807716 0.067600I
a = 0.749405 0.499425I
b = 1.29639 + 0.97122I
0.64641 2.78439I 1.21161 + 6.73563I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.475387 + 0.654531I
a = 0.03470 1.55956I
b = 0.770329 + 0.879847I
1.27228 1.41798I 1.021987 + 0.105675I
u = 0.475387 0.654531I
a = 0.03470 + 1.55956I
b = 0.770329 0.879847I
1.27228 + 1.41798I 1.021987 0.105675I
u = 0.050429 + 0.795903I
a = 1.255810 0.182945I
b = 0.201445 0.051960I
2.95290 2.61250I 1.60904 + 3.16874I
u = 0.050429 0.795903I
a = 1.255810 + 0.182945I
b = 0.201445 + 0.051960I
2.95290 + 2.61250I 1.60904 3.16874I
u = 0.119249 + 0.780742I
a = 1.72510 + 0.11892I
b = 0.152712 0.741542I
1.15099 + 5.81538I 5.00175 6.04754I
u = 0.119249 0.780742I
a = 1.72510 0.11892I
b = 0.152712 + 0.741542I
1.15099 5.81538I 5.00175 + 6.04754I
u = 1.127070 + 0.498863I
a = 0.02921 + 1.49604I
b = 1.00419 1.48775I
0.61092 3.91398I 0
u = 1.127070 0.498863I
a = 0.02921 1.49604I
b = 1.00419 + 1.48775I
0.61092 + 3.91398I 0
u = 0.028534 + 0.756569I
a = 0.125642 0.736579I
b = 0.20550 1.68728I
0.52074 + 2.75335I 1.11486 3.14721I
u = 0.028534 0.756569I
a = 0.125642 + 0.736579I
b = 0.20550 + 1.68728I
0.52074 2.75335I 1.11486 + 3.14721I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.197390 + 0.397927I
a = 0.005516 0.546579I
b = 0.66877 + 1.28063I
2.71082 1.81383I 0
u = 1.197390 0.397927I
a = 0.005516 + 0.546579I
b = 0.66877 1.28063I
2.71082 + 1.81383I 0
u = 1.181700 + 0.455217I
a = 1.05213 0.98897I
b = 1.23536 + 1.54269I
3.30802 + 5.60701I 0
u = 1.181700 0.455217I
a = 1.05213 + 0.98897I
b = 1.23536 1.54269I
3.30802 5.60701I 0
u = 1.184150 + 0.456831I
a = 0.328157 + 0.804933I
b = 0.24589 1.53400I
3.29330 2.94534I 0
u = 1.184150 0.456831I
a = 0.328157 0.804933I
b = 0.24589 + 1.53400I
3.29330 + 2.94534I 0
u = 1.195820 + 0.443985I
a = 1.37811 + 1.50021I
b = 0.05336 2.03271I
4.03956 + 1.53093I 0
u = 1.195820 0.443985I
a = 1.37811 1.50021I
b = 0.05336 + 2.03271I
4.03956 1.53093I 0
u = 1.194680 + 0.465648I
a = 1.20311 + 1.79616I
b = 0.28010 2.17430I
3.88377 7.20029I 0
u = 1.194680 0.465648I
a = 1.20311 1.79616I
b = 0.28010 + 2.17430I
3.88377 + 7.20029I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.010080 + 0.715576I
a = 1.24270 0.73378I
b = 0.308954 + 0.451098I
0.028264 1.352720I 1.88211 + 0.54543I
u = 0.010080 0.715576I
a = 1.24270 + 0.73378I
b = 0.308954 0.451098I
0.028264 + 1.352720I 1.88211 0.54543I
u = 1.212120 + 0.432274I
a = 0.766667 0.450671I
b = 1.14266 + 1.29226I
6.66680 1.70631I 0
u = 1.212120 0.432274I
a = 0.766667 + 0.450671I
b = 1.14266 1.29226I
6.66680 + 1.70631I 0
u = 1.191240 + 0.499876I
a = 1.15247 + 1.32228I
b = 1.04357 2.42873I
1.98773 10.53560I 0
u = 1.191240 0.499876I
a = 1.15247 1.32228I
b = 1.04357 + 2.42873I
1.98773 + 10.53560I 0
u = 1.206990 + 0.476857I
a = 0.580406 + 0.543183I
b = 0.72477 1.55496I
6.34811 + 7.22914I 0
u = 1.206990 0.476857I
a = 0.580406 0.543183I
b = 0.72477 + 1.55496I
6.34811 7.22914I 0
u = 1.245050 + 0.367022I
a = 0.263536 + 0.632197I
b = 0.658637 + 0.468363I
9.64537 7.82161I 0
u = 1.245050 0.367022I
a = 0.263536 0.632197I
b = 0.658637 0.468363I
9.64537 + 7.82161I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.246200 + 0.382136I
a = 0.038717 + 0.547358I
b = 0.842986 + 0.574957I
10.57580 + 1.62455I 0
u = 1.246200 0.382136I
a = 0.038717 0.547358I
b = 0.842986 0.574957I
10.57580 1.62455I 0
u = 1.245340 + 0.402553I
a = 0.662864 0.742768I
b = 0.114048 + 0.113661I
11.48720 + 1.46496I 0
u = 1.245340 0.402553I
a = 0.662864 + 0.742768I
b = 0.114048 0.113661I
11.48720 1.46496I 0
u = 0.229275 + 0.647029I
a = 0.579282 1.224090I
b = 0.829861 0.556928I
3.17453 0.52670I 9.02712 + 0.52794I
u = 0.229275 0.647029I
a = 0.579282 + 1.224090I
b = 0.829861 + 0.556928I
3.17453 + 0.52670I 9.02712 0.52794I
u = 1.245450 + 0.419803I
a = 0.382581 0.719643I
b = 0.330973 0.038714I
11.98730 + 4.79103I 0
u = 1.245450 0.419803I
a = 0.382581 + 0.719643I
b = 0.330973 + 0.038714I
11.98730 4.79103I 0
u = 1.210620 + 0.527810I
a = 2.25559 + 0.82338I
b = 2.14131 2.26366I
8.4995 16.9935I 0
u = 1.210620 0.527810I
a = 2.25559 0.82338I
b = 2.14131 + 2.26366I
8.4995 + 16.9935I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.216030 + 0.519338I
a = 1.99835 + 0.60348I
b = 1.97723 2.00701I
9.5945 + 10.8498I 0
u = 1.216030 0.519338I
a = 1.99835 0.60348I
b = 1.97723 + 2.00701I
9.5945 10.8498I 0
u = 1.221780 + 0.505858I
a = 1.83357 0.90573I
b = 1.52263 + 1.79888I
10.7454 + 10.7319I 0
u = 1.221780 0.505858I
a = 1.83357 + 0.90573I
b = 1.52263 1.79888I
10.7454 10.7319I 0
u = 1.227710 + 0.493367I
a = 1.76734 0.69562I
b = 1.57118 + 1.65545I
11.45740 4.52311I 0
u = 1.227710 0.493367I
a = 1.76734 + 0.69562I
b = 1.57118 1.65545I
11.45740 + 4.52311I 0
u = 0.451798 + 0.412784I
a = 1.286600 0.192388I
b = 0.151873 0.415600I
1.49122 0.27727I 6.33963 + 0.19121I
u = 0.451798 0.412784I
a = 1.286600 + 0.192388I
b = 0.151873 + 0.415600I
1.49122 + 0.27727I 6.33963 0.19121I
u = 0.147589 + 0.554230I
a = 0.385611 0.500096I
b = 0.283515 + 0.578313I
0.05525 1.76673I 0.22399 + 3.93080I
u = 0.147589 0.554230I
a = 0.385611 + 0.500096I
b = 0.283515 0.578313I
0.05525 + 1.76673I 0.22399 3.93080I
14
II.
I
u
2
= hu
3
+2b+2a2u, 2u
3
a+2u
2
au
3
+2a
2
+u
2
2a+2u4, u
4
2u
2
+2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
1
=
a
1
2
u
3
a + u
a
10
=
1
u
2
a
11
=
1
2
u
3
a
1
2
u
3
au +
3
2
u
2
+ a
1
2
u
3
+ au 3u
2
a + 2
a
3
=
u
u
a
2
=
a u
1
2
u
3
a + 2u
a
8
=
u
2
+ 1
2u
2
2
a
5
=
u
u
a
6
=
a
1
2
u
3
a + u
a
7
=
1
u
2
a
12
=
1
2
u
3
a + u
2
a u
3
au +
3
2
u
2
+ u 1
u
2
a +
1
2
u
3
+ au 2u
2
+ a u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
a 2u
3
4u
2
4a + 4u
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
8
c
2
(u + 1)
8
c
3
, c
9
(u
4
2u
2
+ 2)
2
c
4
, c
7
(u
4
+ 2u
2
+ 2)
2
c
6
, c
10
(u
2
u + 1)
4
c
8
(u
2
+ 2u + 2)
4
c
11
, c
12
(u
2
+ u + 1)
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
8
c
3
, c
9
(y
2
2y + 2)
4
c
4
, c
7
(y
2
+ 2y + 2)
4
c
6
, c
10
, c
11
c
12
(y
2
+ y + 1)
4
c
8
(y
2
+ 4)
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.098680 + 0.455090I
a = 1.187820 + 0.276887I
b = 0.410936 0.598684I
0.82247 + 1.63398I 2.00000 0.53590I
u = 1.098680 + 0.455090I
a = 0.544228 + 0.276887I
b = 1.32112 0.59868I
0.82247 + 5.69375I 2.00000 7.46410I
u = 1.098680 0.455090I
a = 1.187820 0.276887I
b = 0.410936 + 0.598684I
0.82247 1.63398I 2.00000 + 0.53590I
u = 1.098680 0.455090I
a = 0.544228 0.276887I
b = 1.32112 + 0.59868I
0.82247 5.69375I 2.00000 + 7.46410I
u = 1.098680 + 0.455090I
a = 0.544228 + 1.276890I
b = 1.32112 1.59868I
0.82247 1.63398I 2.00000 + 0.53590I
u = 1.098680 + 0.455090I
a = 1.18782 + 1.27689I
b = 0.41094 1.59868I
0.82247 5.69375I 2.00000 + 7.46410I
u = 1.098680 0.455090I
a = 0.544228 1.276890I
b = 1.32112 + 1.59868I
0.82247 + 1.63398I 2.00000 0.53590I
u = 1.098680 0.455090I
a = 1.18782 1.27689I
b = 0.41094 + 1.59868I
0.82247 + 5.69375I 2.00000 7.46410I
18
III. I
v
1
= ha, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
4
=
v
0
a
9
=
1
0
a
1
=
0
v + 1
a
10
=
1
0
a
11
=
1
v
a
3
=
v
0
a
2
=
v
v + 1
a
8
=
1
0
a
5
=
v
0
a
6
=
0
v 1
a
7
=
1
0
a
12
=
v + 1
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
, c
9
u
2
c
5
(u + 1)
2
c
6
, c
12
u
2
+ u + 1
c
10
, c
11
u
2
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
, c
9
y
2
c
6
, c
10
, c
11
c
12
y
2
+ y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
100
+ 45u
99
+ ··· + 75u + 1)
c
2
((u 1)
2
)(u + 1)
8
(u
100
+ 3u
99
+ ··· 17u + 1)
c
3
, c
9
u
2
(u
4
2u
2
+ 2)
2
(u
100
u
99
+ ··· + 4u + 4)
c
4
, c
7
u
2
(u
4
+ 2u
2
+ 2)
2
(u
100
3u
99
+ ··· + 3612u + 748)
c
5
((u 1)
8
)(u + 1)
2
(u
100
+ 3u
99
+ ··· 17u + 1)
c
6
((u
2
u + 1)
4
)(u
2
+ u + 1)(u
100
2u
99
+ ··· + 12u + 5)
c
8
u
2
(u
2
+ 2u + 2)
4
(u
100
55u
99
+ ··· 80u + 16)
c
10
((u
2
u + 1)
5
)(u
100
+ 32u
99
+ ··· + 46u + 25)
c
11
(u
2
u + 1)(u
2
+ u + 1)
4
(u
100
2u
99
+ ··· + 12u + 5)
c
12
((u
2
+ u + 1)
5
)(u
100
+ 32u
99
+ ··· + 46u + 25)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
100
+ 35y
99
+ ··· 3619y + 1)
c
2
, c
5
((y 1)
10
)(y
100
45y
99
+ ··· 75y + 1)
c
3
, c
9
y
2
(y
2
2y + 2)
4
(y
100
55y
99
+ ··· 80y + 16)
c
4
, c
7
y
2
(y
2
+ 2y + 2)
4
(y
100
+ 85y
99
+ ··· 2.11968 × 10
7
y + 559504)
c
6
, c
11
((y
2
+ y + 1)
5
)(y
100
+ 32y
99
+ ··· + 46y + 25)
c
8
y
2
(y
2
+ 4)
4
(y
100
15y
99
+ ··· 5376y + 256)
c
10
, c
12
((y
2
+ y + 1)
5
)(y
100
+ 80y
99
+ ··· + 107034y + 625)
24