12a
0367
(K12a
0367
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 11 12 5 4 1 7 8
Solving Sequence
6,11
7 12
3,8
2 1 5 9 10 4
c
6
c
11
c
7
c
2
c
1
c
5
c
8
c
10
c
4
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.26039 × 10
20
u
71
3.31809 × 10
22
u
70
+ ··· + 4.33870 × 10
22
b + 1.79186 × 10
22
,
8.36919 × 10
22
u
71
+ 1.25008 × 10
23
u
70
+ ··· + 8.67739 × 10
22
a + 3.24699 × 10
22
, u
72
2u
71
+ ··· + 2u + 1i
I
u
2
= hb 1, a
2
2a + 2u 3, u
2
u 1i
I
u
3
= hb + 1, a + 1, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.26×10
20
u
71
3.32×10
22
u
70
+· · ·+4.34×10
22
b+1.79×10
22
, 8.37×
10
22
u
71
+1.25×10
23
u
70
+· · ·+8.68×10
22
a+3.25×10
22
, u
72
2u
71
+· · ·+2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
3
=
0.964482u
71
1.44061u
70
+ ··· 11.9876u 0.374190
0.0121244u
71
+ 0.764766u
70
+ ··· + 0.453521u 0.412996
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.976607u
71
0.675847u
70
+ ··· 11.5341u 0.787186
0.0121244u
71
+ 0.764766u
70
+ ··· + 0.453521u 0.412996
a
1
=
u
3
2u
u
5
3u
3
+ u
a
5
=
1.98741u
71
+ 1.11158u
70
+ ··· + 14.3859u + 3.65867
0.926705u
71
+ 0.404836u
70
+ ··· + 1.82730u + 0.532714
a
9
=
0.472718u
71
1.08136u
70
+ ··· 16.3593u 1.33874
1.10315u
71
+ 1.20031u
70
+ ··· + 2.20486u + 0.947164
a
10
=
u
7
4u
5
+ 4u
3
u
9
5u
7
+ 7u
5
2u
3
+ u
a
4
=
1.55989u
71
+ 0.727017u
70
+ ··· + 13.9611u + 3.63430
0.566397u
71
+ 0.322301u
70
+ ··· 0.405449u 0.412002
(ii) Obstruction class = 1
(iii) Cusp Shapes =
124925391140869705539849
43386961394563898337977
u
71
+
155786602228314171185371
43386961394563898337977
u
70
+ ··· +
536149016094843518284893
43386961394563898337977
u
597134730501655502761745
43386961394563898337977
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
72
+ 37u
71
+ ··· + 29u + 1
c
2
, c
5
u
72
+ 3u
71
+ ··· + 7u + 1
c
3
, c
4
, c
9
u
72
u
71
+ ··· 12u 4
c
6
, c
7
, c
11
c
12
u
72
2u
71
+ ··· + 2u + 1
c
8
u
72
+ 3u
71
+ ··· + 1492u + 220
c
10
u
72
20u
71
+ ··· 348u + 113
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
72
+ 3y
71
+ ··· 197y + 1
c
2
, c
5
y
72
37y
71
+ ··· 29y + 1
c
3
, c
4
, c
9
y
72
67y
71
+ ··· 16y + 16
c
6
, c
7
, c
11
c
12
y
72
84y
71
+ ··· 20y + 1
c
8
y
72
7y
71
+ ··· 402704y + 48400
c
10
y
72
12y
71
+ ··· 272524y + 12769
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.928218 + 0.309234I
a = 0.354302 + 0.192132I
b = 1.065700 + 0.515640I
7.24752 + 4.65448I 0
u = 0.928218 0.309234I
a = 0.354302 0.192132I
b = 1.065700 0.515640I
7.24752 4.65448I 0
u = 0.737630 + 0.531689I
a = 0.70377 2.08141I
b = 1.166590 + 0.587970I
5.52989 + 11.86830I 0
u = 0.737630 0.531689I
a = 0.70377 + 2.08141I
b = 1.166590 0.587970I
5.52989 11.86830I 0
u = 0.884804 + 0.189140I
a = 0.504034 + 0.110912I
b = 0.931780 + 0.416732I
2.20323 1.64389I 0
u = 0.884804 0.189140I
a = 0.504034 0.110912I
b = 0.931780 0.416732I
2.20323 + 1.64389I 0
u = 0.883338 + 0.137471I
a = 0.750844 + 0.235422I
b = 0.381393 0.511313I
5.31297 + 0.37168I 12.00000 + 0.I
u = 0.883338 0.137471I
a = 0.750844 0.235422I
b = 0.381393 + 0.511313I
5.31297 0.37168I 12.00000 + 0.I
u = 0.690814 + 0.522826I
a = 0.56315 2.15893I
b = 1.099150 + 0.589092I
0.02673 8.09347I 12.0000 + 9.2851I
u = 0.690814 0.522826I
a = 0.56315 + 2.15893I
b = 1.099150 0.589092I
0.02673 + 8.09347I 12.0000 9.2851I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.678297 + 0.515178I
a = 0.977292 + 0.542744I
b = 0.295256 0.854652I
2.93335 + 6.55153I 14.6691 6.1676I
u = 0.678297 0.515178I
a = 0.977292 0.542744I
b = 0.295256 + 0.854652I
2.93335 6.55153I 14.6691 + 6.1676I
u = 0.630548 + 0.470751I
a = 0.34238 2.38082I
b = 1.003340 + 0.528804I
1.31023 + 3.89736I 15.2781 4.8812I
u = 0.630548 0.470751I
a = 0.34238 + 2.38082I
b = 1.003340 0.528804I
1.31023 3.89736I 15.2781 + 4.8812I
u = 0.669262 + 0.404635I
a = 0.465808 + 0.565250I
b = 1.254740 + 0.247917I
7.95058 + 3.07874I 19.9096 5.4080I
u = 0.669262 0.404635I
a = 0.465808 0.565250I
b = 1.254740 0.247917I
7.95058 3.07874I 19.9096 + 5.4080I
u = 0.597312 + 0.499582I
a = 1.048900 + 0.571843I
b = 0.401917 0.758054I
2.07881 2.99552I 9.38208 + 5.15386I
u = 0.597312 0.499582I
a = 1.048900 0.571843I
b = 0.401917 + 0.758054I
2.07881 + 2.99552I 9.38208 5.15386I
u = 0.670676 + 0.356136I
a = 0.63994 3.06673I
b = 1.042790 + 0.370481I
8.27974 2.07809I 20.0885 + 6.6662I
u = 0.670676 0.356136I
a = 0.63994 + 3.06673I
b = 1.042790 0.370481I
8.27974 + 2.07809I 20.0885 6.6662I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.464343 + 0.536069I
a = 0.09506 1.92402I
b = 0.761545 + 0.651812I
0.22536 + 4.12491I 12.4469 7.3915I
u = 0.464343 0.536069I
a = 0.09506 + 1.92402I
b = 0.761545 0.651812I
0.22536 4.12491I 12.4469 + 7.3915I
u = 0.154574 + 0.651894I
a = 0.81766 + 1.18825I
b = 1.116310 0.581761I
3.80714 7.87957I 14.4786 + 4.9899I
u = 0.154574 0.651894I
a = 0.81766 1.18825I
b = 1.116310 + 0.581761I
3.80714 + 7.87957I 14.4786 4.9899I
u = 0.614548 + 0.255524I
a = 0.757214 + 0.499889I
b = 1.130020 + 0.157751I
2.78857 0.70974I 15.3214 + 8.6751I
u = 0.614548 0.255524I
a = 0.757214 0.499889I
b = 1.130020 0.157751I
2.78857 + 0.70974I 15.3214 8.6751I
u = 0.432857 + 0.495289I
a = 1.20679 + 0.74677I
b = 0.640326 0.609624I
0.159008 0.526549I 12.09743 0.07898I
u = 0.432857 0.495289I
a = 1.20679 0.74677I
b = 0.640326 + 0.609624I
0.159008 + 0.526549I 12.09743 + 0.07898I
u = 0.207458 + 0.606070I
a = 0.95467 + 1.17138I
b = 1.020010 0.576008I
1.44186 + 4.25219I 9.65797 4.16216I
u = 0.207458 0.606070I
a = 0.95467 1.17138I
b = 1.020010 + 0.576008I
1.44186 4.25219I 9.65797 + 4.16216I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.330405 + 0.540726I
a = 0.21935 1.63303I
b = 0.543025 + 0.677815I
2.85712 0.60484I 6.72055 + 2.73837I
u = 0.330405 0.540726I
a = 0.21935 + 1.63303I
b = 0.543025 0.677815I
2.85712 + 0.60484I 6.72055 2.73837I
u = 0.219371 + 0.590317I
a = 0.13232 1.46550I
b = 0.364491 + 0.774875I
1.59296 2.77751I 11.43809 + 0.51083I
u = 0.219371 0.590317I
a = 0.13232 + 1.46550I
b = 0.364491 0.774875I
1.59296 + 2.77751I 11.43809 0.51083I
u = 1.43199 + 0.05905I
a = 0.137202 + 0.892850I
b = 0.769513 0.690097I
2.64448 + 2.59240I 0
u = 1.43199 0.05905I
a = 0.137202 0.892850I
b = 0.769513 + 0.690097I
2.64448 2.59240I 0
u = 0.298512 + 0.480016I
a = 1.31900 + 1.05008I
b = 0.816807 0.489111I
0.322274 0.536528I 12.40737 1.35367I
u = 0.298512 0.480016I
a = 1.31900 1.05008I
b = 0.816807 + 0.489111I
0.322274 + 0.536528I 12.40737 + 1.35367I
u = 1.44062 + 0.04719I
a = 0.166631 0.612110I
b = 0.646775 + 0.712591I
5.88879 1.18432I 0
u = 1.44062 0.04719I
a = 0.166631 + 0.612110I
b = 0.646775 0.712591I
5.88879 + 1.18432I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47803 + 0.12168I
a = 0.385579 + 1.121210I
b = 0.883821 0.684109I
6.54042 6.43614I 0
u = 1.47803 0.12168I
a = 0.385579 1.121210I
b = 0.883821 + 0.684109I
6.54042 + 6.43614I 0
u = 1.52990
a = 1.17737
b = 1.28361
12.4085 0
u = 1.54276 + 0.09438I
a = 0.536674 0.392892I
b = 0.398329 + 0.709261I
6.76870 1.23124I 0
u = 1.54276 0.09438I
a = 0.536674 + 0.392892I
b = 0.398329 0.709261I
6.76870 + 1.23124I 0
u = 1.56930 + 0.13818I
a = 0.509105 0.235933I
b = 0.316957 + 0.850275I
5.21517 + 5.29137I 0
u = 1.56930 0.13818I
a = 0.509105 + 0.235933I
b = 0.316957 0.850275I
5.21517 5.29137I 0
u = 1.58519 + 0.08012I
a = 1.075000 0.153161I
b = 1.247880 0.216923I
10.34390 + 1.99279I 0
u = 1.58519 0.08012I
a = 1.075000 + 0.153161I
b = 1.247880 + 0.216923I
10.34390 1.99279I 0
u = 1.58354 + 0.13428I
a = 0.90062 + 1.56369I
b = 1.091900 0.562937I
8.80863 6.10945I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58354 0.13428I
a = 0.90062 1.56369I
b = 1.091900 + 0.562937I
8.80863 + 6.10945I 0
u = 1.59498 + 0.02541I
a = 1.026250 0.269553I
b = 0.227957 + 0.286684I
13.76460 + 0.04291I 0
u = 1.59498 0.02541I
a = 1.026250 + 0.269553I
b = 0.227957 0.286684I
13.76460 0.04291I 0
u = 1.59687 + 0.10259I
a = 0.95169 + 1.95273I
b = 1.080760 0.462527I
16.0269 + 3.7857I 0
u = 1.59687 0.10259I
a = 0.95169 1.95273I
b = 1.080760 + 0.462527I
16.0269 3.7857I 0
u = 1.59634 + 0.11517I
a = 1.058470 0.213570I
b = 1.306430 0.292171I
15.6716 5.0007I 0
u = 1.59634 0.11517I
a = 1.058470 + 0.213570I
b = 1.306430 + 0.292171I
15.6716 + 5.0007I 0
u = 1.59603 + 0.15088I
a = 0.526312 0.168658I
b = 0.243882 + 0.912614I
10.61980 9.02169I 0
u = 1.59603 0.15088I
a = 0.526312 + 0.168658I
b = 0.243882 0.912614I
10.61980 + 9.02169I 0
u = 1.60049 + 0.15455I
a = 1.05682 + 1.42543I
b = 1.156870 0.592655I
7.71958 + 10.61700I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60049 0.15455I
a = 1.05682 1.42543I
b = 1.156870 + 0.592655I
7.71958 10.61700I 0
u = 0.131293 + 0.355319I
a = 0.20840 + 2.27516I
b = 1.145400 0.148687I
6.48927 0.23669I 15.5734 1.1399I
u = 0.131293 0.355319I
a = 0.20840 2.27516I
b = 1.145400 + 0.148687I
6.48927 + 0.23669I 15.5734 + 1.1399I
u = 1.61800 + 0.15854I
a = 1.17742 + 1.38527I
b = 1.204960 0.585327I
13.5182 14.4723I 0
u = 1.61800 0.15854I
a = 1.17742 1.38527I
b = 1.204960 + 0.585327I
13.5182 + 14.4723I 0
u = 1.63839 + 0.04440I
a = 0.969701 0.100633I
b = 1.021090 0.277570I
10.84760 + 0.79068I 0
u = 1.63839 0.04440I
a = 0.969701 + 0.100633I
b = 1.021090 + 0.277570I
10.84760 0.79068I 0
u = 1.64717
a = 0.905015
b = 0.467479
13.9145 0
u = 0.339972
a = 0.935322
b = 0.240550
0.545345 17.9680
u = 1.66353 + 0.06990I
a = 0.938576 0.156768I
b = 1.076900 0.435530I
16.2206 3.2650I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.66353 0.06990I
a = 0.938576 + 0.156768I
b = 1.076900 + 0.435530I
16.2206 + 3.2650I 0
u = 0.311962
a = 5.58565
b = 0.860089
6.70110 11.7920
12
II. I
u
2
= hb 1, a
2
2a + 2u 3, u
2
u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u + 1
a
12
=
u
u 1
a
3
=
a
1
a
8
=
u
u
a
2
=
a + 1
1
a
1
=
1
0
a
5
=
a
1
a
9
=
au 2
au 2u
a
10
=
u
u
a
4
=
au u 1
au + a u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
8
c
9
(u
2
2)
2
c
6
, c
7
(u
2
u 1)
2
c
10
, c
11
, c
12
(u
2
+ u 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
(y 2)
4
c
6
, c
7
, c
10
c
11
, c
12
(y
2
3y + 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.28825
b = 1.00000
7.56670 24.0000
u = 0.618034
a = 3.28825
b = 1.00000
7.56670 24.0000
u = 1.61803
a = 0.125968
b = 1.00000
15.4624 24.0000
u = 1.61803
a = 1.87403
b = 1.00000
15.4624 24.0000
16
III. I
u
3
= hb + 1, a + 1, u
2
+ u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u + 1
a
12
=
u
u + 1
a
3
=
1
1
a
8
=
u
u
a
2
=
2
1
a
1
=
1
0
a
5
=
1
1
a
9
=
u
u
a
10
=
u
u
a
4
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
8
c
9
u
2
c
5
(u + 1)
2
c
6
, c
7
, c
10
u
2
+ u 1
c
11
, c
12
u
2
u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
8
c
9
y
2
c
6
, c
7
, c
10
c
11
, c
12
y
2
3y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 1.00000
2.63189 14.0000
u = 1.61803
a = 1.00000
b = 1.00000
10.5276 14.0000
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
72
+ 37u
71
+ ··· + 29u + 1)
c
2
((u 1)
2
)(u + 1)
4
(u
72
+ 3u
71
+ ··· + 7u + 1)
c
3
, c
4
, c
9
u
2
(u
2
2)
2
(u
72
u
71
+ ··· 12u 4)
c
5
((u 1)
4
)(u + 1)
2
(u
72
+ 3u
71
+ ··· + 7u + 1)
c
6
, c
7
((u
2
u 1)
2
)(u
2
+ u 1)(u
72
2u
71
+ ··· + 2u + 1)
c
8
u
2
(u
2
2)
2
(u
72
+ 3u
71
+ ··· + 1492u + 220)
c
10
((u
2
+ u 1)
3
)(u
72
20u
71
+ ··· 348u + 113)
c
11
, c
12
(u
2
u 1)(u
2
+ u 1)
2
(u
72
2u
71
+ ··· + 2u + 1)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
72
+ 3y
71
+ ··· 197y + 1)
c
2
, c
5
((y 1)
6
)(y
72
37y
71
+ ··· 29y + 1)
c
3
, c
4
, c
9
y
2
(y 2)
4
(y
72
67y
71
+ ··· 16y + 16)
c
6
, c
7
, c
11
c
12
((y
2
3y + 1)
3
)(y
72
84y
71
+ ··· 20y + 1)
c
8
y
2
(y 2)
4
(y
72
7y
71
+ ··· 402704y + 48400)
c
10
((y
2
3y + 1)
3
)(y
72
12y
71
+ ··· 272524y + 12769)
22