12a
0371
(K12a
0371
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 11 12 1 5 4 7 8
Solving Sequence
7,12
8 1
3,9
4 11 6 2 5 10
c
7
c
12
c
8
c
3
c
11
c
6
c
2
c
5
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h6.22403 × 10
15
u
53
2.16644 × 10
16
u
52
+ ··· + 1.15315 × 10
16
b + 1.86130 × 10
15
,
3.84141 × 10
15
u
53
5.38285 × 10
15
u
52
+ ··· + 3.45944 × 10
16
a + 4.72334 × 10
16
, u
54
2u
53
+ ··· 9u + 3i
I
u
2
= hb + 1, a 1, u
2
u 1i
I
u
3
= h−au + b u 1, a
2
+ 2a + 3, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h6.22×10
15
u
53
2.17×10
16
u
52
+· · ·+1.15×10
16
b+1.86×10
15
, 3.84×
10
15
u
53
5.38×10
15
u
52
+· · ·+3.46×10
16
a+4.72×10
16
, u
54
2u
53
+· · ·9u+3i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
0.111041u
53
+ 0.155599u
52
+ ··· + 4.11220u 1.36535
0.539742u
53
+ 1.87871u
52
+ ··· + 3.32643u 0.161411
a
9
=
u
2
+ 1
u
4
2u
2
a
4
=
0.607017u
53
+ 0.0379752u
52
+ ··· + 3.56687u 1.29746
1.30686u
53
+ 2.07232u
52
+ ··· 0.567204u + 1.29954
a
11
=
u
u
a
6
=
u
2
+ 1
u
2
a
2
=
0.874650u
53
+ 0.540026u
52
+ ··· + 6.16049u 2.08423
1.85817u
53
+ 1.24119u
52
+ ··· 7.27374u + 3.92680
a
5
=
0.818828u
53
1.31508u
52
+ ··· 12.3614u + 1.51037
1.22880u
53
+ 1.80213u
52
+ ··· + 3.71901u 0.853328
a
10
=
0.287418u
53
0.715155u
52
+ ··· 7.57410u + 3.47537
0.496261u
53
+ 1.55979u
52
+ ··· + 11.6363u 3.00772
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1362927332552725
5765740254433699
u
53
23381515261364111
5765740254433699
u
52
+···
315387112075661492
5765740254433699
u+
81812943695667795
5765740254433699
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
54
+ 25u
53
+ ··· + 4038u + 121
c
2
, c
5
u
54
+ 3u
53
+ ··· 12u + 11
c
3
u
54
u
53
+ ··· 1064u + 212
c
4
, c
9
, c
10
u
54
+ u
53
+ ··· 36u
2
+ 4
c
6
, c
7
, c
8
c
11
, c
12
u
54
+ 2u
53
+ ··· + 9u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
54
+ 15y
53
+ ··· 5943246y + 14641
c
2
, c
5
y
54
25y
53
+ ··· 4038y + 121
c
3
y
54
11y
53
+ ··· 679264y + 44944
c
4
, c
9
, c
10
y
54
+ 49y
53
+ ··· 288y + 16
c
6
, c
7
, c
8
c
11
, c
12
y
54
72y
53
+ ··· + 15y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.033200 + 0.205031I
a = 0.154928 0.608627I
b = 0.043531 1.156360I
2.48098 2.65644I 0
u = 1.033200 0.205031I
a = 0.154928 + 0.608627I
b = 0.043531 + 1.156360I
2.48098 + 2.65644I 0
u = 0.909027 + 0.201496I
a = 1.133080 0.239512I
b = 1.44506 + 0.44518I
4.31420 2.29321I 6.00000 + 3.97838I
u = 0.909027 0.201496I
a = 1.133080 + 0.239512I
b = 1.44506 0.44518I
4.31420 + 2.29321I 6.00000 3.97838I
u = 1.002340 + 0.391017I
a = 0.373522 0.490684I
b = 0.159427 1.337780I
0.92608 10.90870I 0
u = 1.002340 0.391017I
a = 0.373522 + 0.490684I
b = 0.159427 + 1.337780I
0.92608 + 10.90870I 0
u = 1.035390 + 0.306908I
a = 0.826876 + 0.402579I
b = 0.073409 + 0.249362I
1.28679 5.35006I 0
u = 1.035390 0.306908I
a = 0.826876 0.402579I
b = 0.073409 0.249362I
1.28679 + 5.35006I 0
u = 1.035020 + 0.327197I
a = 0.175793 0.504243I
b = 0.136856 1.285110I
4.34470 + 6.91339I 0
u = 1.035020 0.327197I
a = 0.175793 + 0.504243I
b = 0.136856 + 1.285110I
4.34470 6.91339I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.084440 + 0.195251I
a = 0.775059 + 0.381941I
b = 0.098656 + 0.410716I
5.85353 + 1.52576I 0
u = 1.084440 0.195251I
a = 0.775059 0.381941I
b = 0.098656 0.410716I
5.85353 1.52576I 0
u = 1.120580 + 0.004894I
a = 0.589724 + 0.389273I
b = 0.128535 + 0.742200I
3.05827 + 2.30358I 0
u = 1.120580 0.004894I
a = 0.589724 0.389273I
b = 0.128535 0.742200I
3.05827 2.30358I 0
u = 0.849728 + 0.155769I
a = 0.39360 1.41513I
b = 0.39372 1.40393I
4.89459 + 1.45597I 7.23813 5.57336I
u = 0.849728 0.155769I
a = 0.39360 + 1.41513I
b = 0.39372 + 1.40393I
4.89459 1.45597I 7.23813 + 5.57336I
u = 0.824308
a = 1.10776
b = 1.34525
0.0557748 15.4170
u = 0.611997 + 0.492090I
a = 0.641324 0.317061I
b = 0.772587 + 0.690967I
3.28887 3.64964I 5.12459 + 1.94620I
u = 0.611997 0.492090I
a = 0.641324 + 0.317061I
b = 0.772587 0.690967I
3.28887 + 3.64964I 5.12459 1.94620I
u = 0.184324 + 0.638362I
a = 1.16880 + 1.08855I
b = 0.356445 0.466281I
4.58312 + 7.42689I 2.31046 6.99724I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.184324 0.638362I
a = 1.16880 1.08855I
b = 0.356445 + 0.466281I
4.58312 7.42689I 2.31046 + 6.99724I
u = 0.454241 + 0.453212I
a = 0.661574 + 0.833835I
b = 0.301434 0.167958I
2.14560 + 0.88769I 6.18591 4.35554I
u = 0.454241 0.453212I
a = 0.661574 0.833835I
b = 0.301434 + 0.167958I
2.14560 0.88769I 6.18591 + 4.35554I
u = 0.455135 + 0.442932I
a = 0.490955 0.173110I
b = 0.587686 + 0.546971I
1.046370 + 0.494844I 10.64023 + 0.18722I
u = 0.455135 0.442932I
a = 0.490955 + 0.173110I
b = 0.587686 0.546971I
1.046370 0.494844I 10.64023 0.18722I
u = 0.248292 + 0.564754I
a = 0.98947 + 1.14172I
b = 0.374122 0.374831I
0.36246 3.88016I 7.34275 + 7.06872I
u = 0.248292 0.564754I
a = 0.98947 1.14172I
b = 0.374122 + 0.374831I
0.36246 + 3.88016I 7.34275 7.06872I
u = 0.260818 + 0.544636I
a = 0.240106 0.253128I
b = 0.306471 + 0.627052I
2.73742 + 2.46050I 4.87493 3.38491I
u = 0.260818 0.544636I
a = 0.240106 + 0.253128I
b = 0.306471 0.627052I
2.73742 2.46050I 4.87493 + 3.38491I
u = 1.54880 + 0.05145I
a = 0.928695 0.013670I
b = 0.951552 + 0.345464I
3.71593 + 1.81884I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54880 0.05145I
a = 0.928695 + 0.013670I
b = 0.951552 0.345464I
3.71593 1.81884I 0
u = 0.421997
a = 0.252936
b = 0.323293
0.611710 16.5140
u = 1.59012
a = 1.01605
b = 1.17062
7.70118 0
u = 0.209460 + 0.318057I
a = 0.26966 + 1.81111I
b = 0.598382 0.217505I
1.44891 + 0.87205I 0.45042 2.57700I
u = 0.209460 0.318057I
a = 0.26966 1.81111I
b = 0.598382 + 0.217505I
1.44891 0.87205I 0.45042 + 2.57700I
u = 0.052280 + 0.369852I
a = 2.16277 + 2.09624I
b = 0.774037 0.521212I
7.25657 + 0.32248I 3.59043 0.24507I
u = 0.052280 0.369852I
a = 2.16277 2.09624I
b = 0.774037 + 0.521212I
7.25657 0.32248I 3.59043 + 0.24507I
u = 1.68847 + 0.03150I
a = 0.90904 3.14347I
b = 1.74981 + 5.17567I
4.15513 2.12237I 0
u = 1.68847 0.03150I
a = 0.90904 + 3.14347I
b = 1.74981 5.17567I
4.15513 + 2.12237I 0
u = 1.69091
a = 1.02001
b = 0.854840
8.98922 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.69828 + 0.04672I
a = 1.022170 + 0.018668I
b = 0.834861 + 0.045952I
4.95768 + 3.23508I 0
u = 1.69828 0.04672I
a = 1.022170 0.018668I
b = 0.834861 0.045952I
4.95768 3.23508I 0
u = 1.71944 + 0.10562I
a = 0.42831 2.69040I
b = 0.36112 + 4.43030I
8.6699 + 12.9219I 0
u = 1.71944 0.10562I
a = 0.42831 + 2.69040I
b = 0.36112 4.43030I
8.6699 12.9219I 0
u = 1.72963 + 0.05599I
a = 0.14187 2.61907I
b = 0.54631 + 4.33951I
12.36250 + 3.74731I 0
u = 1.72963 0.05599I
a = 0.14187 + 2.61907I
b = 0.54631 4.33951I
12.36250 3.74731I 0
u = 1.72946 + 0.07949I
a = 0.62410 + 1.44096I
b = 1.29088 2.56923I
11.12150 + 6.92662I 0
u = 1.72946 0.07949I
a = 0.62410 1.44096I
b = 1.29088 + 2.56923I
11.12150 6.92662I 0
u = 1.72986 + 0.08588I
a = 0.19966 2.64199I
b = 0.00573 + 4.36280I
14.1686 8.6037I 0
u = 1.72986 0.08588I
a = 0.19966 + 2.64199I
b = 0.00573 4.36280I
14.1686 + 8.6037I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.73989 + 0.05063I
a = 0.61741 + 1.65827I
b = 1.29019 2.88401I
15.9719 2.5529I 0
u = 1.73989 0.05063I
a = 0.61741 1.65827I
b = 1.29019 + 2.88401I
15.9719 + 2.5529I 0
u = 1.74111 + 0.01390I
a = 0.59275 + 1.97467I
b = 1.25696 3.35550I
13.30770 2.12200I 0
u = 1.74111 0.01390I
a = 0.59275 1.97467I
b = 1.25696 + 3.35550I
13.30770 + 2.12200I 0
10
II. I
u
2
= hb + 1, a 1, u
2
u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u 1
a
1
=
u
u 1
a
3
=
1
1
a
9
=
u
u
a
4
=
1
1
a
11
=
u
u
a
6
=
u
u + 1
a
2
=
u + 1
u 2
a
5
=
1
1
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
9
c
10
u
2
c
5
(u + 1)
2
c
6
, c
7
, c
8
u
2
u 1
c
11
, c
12
u
2
+ u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
9
c
10
y
2
c
6
, c
7
, c
8
c
11
, c
12
y
2
3y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 1.00000
0.657974 2.00000
u = 1.61803
a = 1.00000
b = 1.00000
7.23771 2.00000
14
III. I
u
3
= h−au + b u 1, a
2
+ 2a + 3, u
2
+ u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u 1
a
1
=
u
u + 1
a
3
=
a
au + u + 1
a
9
=
u
u
a
4
=
au + a + u
1
a
11
=
u
u
a
6
=
u
u + 1
a
2
=
a + u
au + 2
a
5
=
a
au u 1
a
10
=
a + u + 3
a + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
9
c
10
(u
2
+ 2)
2
c
6
, c
7
, c
8
(u
2
+ u 1)
2
c
11
, c
12
(u
2
u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
9
c
10
(y + 2)
4
c
6
, c
7
, c
8
c
11
, c
12
(y
2
3y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000 + 1.41421I
b = 1.000000 + 0.874032I
5.59278 4.00000
u = 0.618034
a = 1.00000 1.41421I
b = 1.000000 0.874032I
5.59278 4.00000
u = 1.61803
a = 1.00000 + 1.41421I
b = 1.00000 2.28825I
2.30291 4.00000
u = 1.61803
a = 1.00000 1.41421I
b = 1.00000 + 2.28825I
2.30291 4.00000
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
54
+ 25u
53
+ ··· + 4038u + 121)
c
2
((u 1)
2
)(u + 1)
4
(u
54
+ 3u
53
+ ··· 12u + 11)
c
3
u
2
(u
2
+ 2)
2
(u
54
u
53
+ ··· 1064u + 212)
c
4
, c
9
, c
10
u
2
(u
2
+ 2)
2
(u
54
+ u
53
+ ··· 36u
2
+ 4)
c
5
((u 1)
4
)(u + 1)
2
(u
54
+ 3u
53
+ ··· 12u + 11)
c
6
, c
7
, c
8
(u
2
u 1)(u
2
+ u 1)
2
(u
54
+ 2u
53
+ ··· + 9u + 3)
c
11
, c
12
((u
2
u 1)
2
)(u
2
+ u 1)(u
54
+ 2u
53
+ ··· + 9u + 3)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
54
+ 15y
53
+ ··· 5943246y + 14641)
c
2
, c
5
((y 1)
6
)(y
54
25y
53
+ ··· 4038y + 121)
c
3
y
2
(y + 2)
4
(y
54
11y
53
+ ··· 679264y + 44944)
c
4
, c
9
, c
10
y
2
(y + 2)
4
(y
54
+ 49y
53
+ ··· 288y + 16)
c
6
, c
7
, c
8
c
11
, c
12
((y
2
3y + 1)
3
)(y
54
72y
53
+ ··· + 15y + 9)
20