12a
0373
(K12a
0373
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 12 11 5 4 8 1 7
Solving Sequence
7,12
1
2,6
3 5 11 8 9 10 4
c
12
c
6
c
2
c
5
c
11
c
7
c
8
c
10
c
4
c
1
, c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
26
+ u
25
+ ··· + 2b 1, u
26
+ u
25
+ ··· + 2a 3, u
28
u
27
+ ··· + 2u 1i
I
u
2
= h−319541245u
47
+ 177558344u
46
+ ··· + 205886657b + 360357122,
215527940u
47
+ 208732938u
46
+ ··· + 205886657a + 1321032619, u
48
u
47
+ ··· 8u + 1i
I
u
3
= hb a 1, a
2
2a 1, u 1i
I
u
4
= hb 2, a 1, u + 1i
* 4 irreducible components of dim
C
= 0, with total 79 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
26
+u
25
+· · ·+2b1, u
26
+u
25
+· · ·+2a3, u
28
u
27
+· · ·+2u1i
(i) Arc colorings
a
7
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
2
=
1
2
u
26
1
2
u
25
+ ··· u +
3
2
1
2
u
26
1
2
u
25
+ ··· u +
1
2
a
6
=
u
u
a
3
=
1
2
u
26
1
2
u
25
+ ··· u +
3
2
1
2
u
26
1
2
u
25
+ ··· u +
1
2
a
5
=
1
2
u
27
1
2
u
26
+ ··· u
2
+
5
2
u
1
2
u
27
1
2
u
26
+ ··· u
2
+
3
2
u
a
11
=
u
2
+ 1
u
4
a
8
=
u
5
2u
3
+ u
u
7
u
5
+ u
a
9
=
5
2
u
27
+ 3u
26
+ ···
7
2
u +
1
2
2u
27
+
5
2
u
26
+ ··· 3u +
1
2
a
10
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 2u
8
u
6
2u
4
+ u
2
a
4
=
1
2
u
27
1
2
u
26
+ ··· u
2
+
7
2
u
u
23
5u
21
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
27
+ u
26
+ 8u
25
7u
24
34u
23
+ 26u
22
+ 91u
21
62u
20
163u
19
+ 106u
18
+ 183u
17
128u
16
92u
15
+ 100u
14
68u
13
20u
12
+ 154u
11
51u
10
107u
9
+ 67u
8
+ 10u
7
26u
6
+ 29u
5
2u
4
19u
3
+ 14u
2
+ 5u 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
28
+ 15u
27
+ ··· + 8u + 1
c
2
, c
5
, c
6
c
12
u
28
+ u
27
+ ··· 2u 1
c
3
, c
4
, c
9
u
28
3u
27
+ ··· 2u 2
c
7
, c
10
u
28
+ 3u
27
+ ··· 16u 16
c
8
u
28
+ 9u
27
+ ··· + 162u + 38
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
28
+ y
27
+ ··· 16y + 1
c
2
, c
5
, c
6
c
12
y
28
15y
27
+ ··· 8y + 1
c
3
, c
4
, c
9
y
28
27y
27
+ ··· 12y + 4
c
7
, c
10
y
28
+ 25y
27
+ ··· 3840y + 256
c
8
y
28
15y
27
+ ··· 18188y + 1444
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.921994 + 0.438316I
a = 0.76982 + 1.29038I
b = 1.76982 + 1.29038I
1.75772 3.56547I 11.57837 + 4.88877I
u = 0.921994 0.438316I
a = 0.76982 1.29038I
b = 1.76982 1.29038I
1.75772 + 3.56547I 11.57837 4.88877I
u = 0.980184 + 0.322710I
a = 1.17512 2.37431I
b = 2.17512 2.37431I
8.48761 + 2.20286I 16.1598 6.7049I
u = 0.980184 0.322710I
a = 1.17512 + 2.37431I
b = 2.17512 + 2.37431I
8.48761 2.20286I 16.1598 + 6.7049I
u = 0.774066 + 0.543182I
a = 0.135954 + 0.570759I
b = 1.135950 + 0.570759I
1.36302 4.31651I 8.31039 + 7.39761I
u = 0.774066 0.543182I
a = 0.135954 0.570759I
b = 1.135950 0.570759I
1.36302 + 4.31651I 8.31039 7.39761I
u = 0.990674 + 0.520560I
a = 1.20586 0.76603I
b = 2.20586 0.76603I
0.24283 + 7.08786I 8.04162 9.83073I
u = 0.990674 0.520560I
a = 1.20586 + 0.76603I
b = 2.20586 + 0.76603I
0.24283 7.08786I 8.04162 + 9.83073I
u = 0.078627 + 0.853313I
a = 0.876417 0.044224I
b = 0.1235830 0.0442237I
7.82726 + 5.09468I 10.66054 2.85681I
u = 0.078627 0.853313I
a = 0.876417 + 0.044224I
b = 0.1235830 + 0.0442237I
7.82726 5.09468I 10.66054 + 2.85681I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.051900 + 0.542779I
a = 1.53095 + 0.56330I
b = 2.53095 + 0.56330I
5.30353 10.40520I 13.0720 + 9.8966I
u = 1.051900 0.542779I
a = 1.53095 0.56330I
b = 2.53095 0.56330I
5.30353 + 10.40520I 13.0720 9.8966I
u = 0.613429 + 0.514922I
a = 0.383789 0.430769I
b = 0.616211 0.430769I
2.08348 + 1.42913I 1.76601 3.86378I
u = 0.613429 0.514922I
a = 0.383789 + 0.430769I
b = 0.616211 + 0.430769I
2.08348 1.42913I 1.76601 + 3.86378I
u = 0.052810 + 0.786288I
a = 0.850234 + 0.019571I
b = 0.149766 + 0.019571I
1.72551 1.99191I 6.96869 + 3.27675I
u = 0.052810 0.786288I
a = 0.850234 0.019571I
b = 0.149766 0.019571I
1.72551 + 1.99191I 6.96869 3.27675I
u = 0.755899
a = 3.09480
b = 2.09480
7.05303 9.54120
u = 0.439706 + 0.594385I
a = 0.593130 + 0.123123I
b = 0.406870 + 0.123123I
1.78196 + 1.31248I 6.93906 0.09185I
u = 0.439706 0.594385I
a = 0.593130 0.123123I
b = 0.406870 0.123123I
1.78196 1.31248I 6.93906 + 0.09185I
u = 1.222060 + 0.480272I
a = 2.62599 + 0.44865I
b = 3.62599 + 0.44865I
8.88868 7.02526I 14.1377 + 3.4246I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.222060 0.480272I
a = 2.62599 0.44865I
b = 3.62599 0.44865I
8.88868 + 7.02526I 14.1377 3.4246I
u = 1.236550 + 0.456519I
a = 2.78618 0.51023I
b = 3.78618 0.51023I
15.5795 + 3.9534I 17.7234 3.5115I
u = 1.236550 0.456519I
a = 2.78618 + 0.51023I
b = 3.78618 + 0.51023I
15.5795 3.9534I 17.7234 + 3.5115I
u = 1.230830 + 0.503719I
a = 2.58655 0.30440I
b = 3.58655 0.30440I
8.5405 + 11.5460I 13.2621 8.9561I
u = 1.230830 0.503719I
a = 2.58655 + 0.30440I
b = 3.58655 + 0.30440I
8.5405 11.5460I 13.2621 + 8.9561I
u = 1.247800 + 0.513255I
a = 2.63357 + 0.20263I
b = 3.63357 + 0.20263I
14.7882 15.0837I 16.6461 + 8.7538I
u = 1.247800 0.513255I
a = 2.63357 0.20263I
b = 3.63357 0.20263I
14.7882 + 15.0837I 16.6461 8.7538I
u = 0.492557
a = 1.39804
b = 0.398043
0.810096 11.9270
7
II.
I
u
2
= h−3.20 × 10
8
u
47
+ 1.78 × 10
8
u
46
+ · · · + 2.06 × 10
8
b + 3.60 × 10
8
, 2.16 ×
10
8
u
47
+ 2.09 × 10
8
u
46
+ · · · + 2.06 × 10
8
a + 1.32 × 10
9
, u
48
u
47
+ · · · 8u + 1i
(i) Arc colorings
a
7
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
2
=
1.04683u
47
1.01382u
46
+ ··· + 11.4027u 6.41631
1.55203u
47
0.862408u
46
+ ··· + 19.4033u 1.75027
a
6
=
u
u
a
3
=
2.59885u
47
0.151416u
46
+ ··· 8.00057u 3.66604
1
a
5
=
1.68962u
47
+ 1.95136u
46
+ ··· 30.6659u + 9.55203
3.43989u
47
+ 2.14960u
46
+ ··· 35.1228u + 4.15088
a
11
=
u
2
+ 1
u
4
a
8
=
u
5
2u
3
+ u
u
7
u
5
+ u
a
9
=
1.60683u
47
1.87545u
46
+ ··· + 36.4501u 11.3739
3.10718u
47
1.12758u
46
+ ··· + 29.8831u 2.79161
a
10
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 2u
8
u
6
2u
4
+ u
2
a
4
=
3.76524u
47
+ 2.40841u
46
+ ··· 49.1362u + 10.7273
3.47021u
47
+ 1.77305u
46
+ ··· 39.0183u + 4.67429
(ii) Obstruction class = 1
(iii) Cusp Shapes =
631990468
205886657
u
47
+
465365120
205886657
u
46
+ ···
3102970832
205886657
u
2431744494
205886657
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
48
+ 29u
47
+ ··· + 24u + 1
c
2
, c
5
, c
6
c
12
u
48
+ u
47
+ ··· + 8u + 1
c
3
, c
4
, c
9
(u
24
+ u
23
+ ··· + 2u
2
+ 1)
2
c
7
, c
10
(u
24
+ 3u
23
+ ··· + 8u + 1)
2
c
8
(u
24
3u
23
+ ··· + 20u 7)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
48
21y
47
+ ··· 200y + 1
c
2
, c
5
, c
6
c
12
y
48
29y
47
+ ··· 24y + 1
c
3
, c
4
, c
9
(y
24
23y
23
+ ··· + 4y + 1)
2
c
7
, c
10
(y
24
+ 25y
23
+ ··· 20y + 1)
2
c
8
(y
24
11y
23
+ ··· 904y + 49)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.875536 + 0.478830I
a = 0.419112 + 0.403211I
b = 0.343557 0.331283I
1.35397 + 2.66216I 3.92476 4.83074I
u = 0.875536 0.478830I
a = 0.419112 0.403211I
b = 0.343557 + 0.331283I
1.35397 2.66216I 3.92476 + 4.83074I
u = 0.928005 + 0.232240I
a = 0.962555 0.563076I
b = 2.08357 0.14868I
3.21053 + 0.91014I 10.29590 7.59691I
u = 0.928005 0.232240I
a = 0.962555 + 0.563076I
b = 2.08357 + 0.14868I
3.21053 0.91014I 10.29590 + 7.59691I
u = 0.977580 + 0.376330I
a = 1.24225 + 0.85998I
b = 2.26266 + 0.27285I
8.10484 3.00632I 16.2116 + 5.2078I
u = 0.977580 0.376330I
a = 1.24225 0.85998I
b = 2.26266 0.27285I
8.10484 + 3.00632I 16.2116 5.2078I
u = 0.084832 + 0.905577I
a = 0.02527 2.46335I
b = 0.444768 1.068990I
11.2635 + 9.9819I 13.7315 5.9102I
u = 0.084832 0.905577I
a = 0.02527 + 2.46335I
b = 0.444768 + 1.068990I
11.2635 9.9819I 13.7315 + 5.9102I
u = 0.975723 + 0.512661I
a = 0.278677 0.196830I
b = 0.303519 + 0.516465I
3.27507 5.67994I 9.94555 + 5.89837I
u = 0.975723 0.512661I
a = 0.278677 + 0.196830I
b = 0.303519 0.516465I
3.27507 + 5.67994I 9.94555 5.89837I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.10921
a = 1.05746
b = 1.30690
6.49901 13.5250
u = 0.085056 + 0.866392I
a = 0.07330 + 2.43709I
b = 0.483737 + 1.004500I
5.10100 6.59660I 10.25616 + 6.15928I
u = 0.085056 0.866392I
a = 0.07330 2.43709I
b = 0.483737 1.004500I
5.10100 + 6.59660I 10.25616 6.15928I
u = 1.136550 + 0.124220I
a = 1.298770 + 0.141437I
b = 2.08357 0.14868I
3.21053 + 0.91014I 10.29590 7.59691I
u = 1.136550 0.124220I
a = 1.298770 0.141437I
b = 2.08357 + 0.14868I
3.21053 0.91014I 10.29590 + 7.59691I
u = 1.14654
a = 1.12471
b = 1.52118
6.50341 12.8060
u = 0.010009 + 0.845119I
a = 0.14836 + 2.52185I
b = 0.659667 + 1.055680I
11.84460 + 0.67393I 14.5407 + 0.1814I
u = 0.010009 0.845119I
a = 0.14836 2.52185I
b = 0.659667 1.055680I
11.84460 0.67393I 14.5407 0.1814I
u = 0.654107 + 0.532512I
a = 0.491389 0.979217I
b = 0.288575
1.06061 7.24605 + 0.I
u = 0.654107 0.532512I
a = 0.491389 + 0.979217I
b = 0.288575
1.06061 7.24605 + 0.I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.044979 + 0.827674I
a = 0.13755 2.46289I
b = 0.584379 0.979751I
5.39544 + 2.30642I 11.07491 0.09891I
u = 0.044979 0.827674I
a = 0.13755 + 2.46289I
b = 0.584379 + 0.979751I
5.39544 2.30642I 11.07491 + 0.09891I
u = 0.341440 + 0.708714I
a = 0.25475 1.91671I
b = 0.303519 0.516465I
3.27507 + 5.67994I 9.94555 5.89837I
u = 0.341440 0.708714I
a = 0.25475 + 1.91671I
b = 0.303519 + 0.516465I
3.27507 5.67994I 9.94555 + 5.89837I
u = 1.218480 + 0.189965I
a = 1.52641 0.15079I
b = 2.26266 + 0.27285I
8.10484 3.00632I 16.2116 + 5.2078I
u = 1.218480 0.189965I
a = 1.52641 + 0.15079I
b = 2.26266 0.27285I
8.10484 + 3.00632I 16.2116 5.2078I
u = 0.417849 + 0.606898I
a = 0.48214 + 1.67851I
b = 0.343557 + 0.331283I
1.35397 2.66216I 3.92476 + 4.83074I
u = 0.417849 0.606898I
a = 0.48214 1.67851I
b = 0.343557 0.331283I
1.35397 + 2.66216I 3.92476 4.83074I
u = 1.207460 + 0.436538I
a = 0.398151 + 0.361612I
b = 0.584379 + 0.979751I
5.39544 2.30642I 0
u = 1.207460 0.436538I
a = 0.398151 0.361612I
b = 0.584379 0.979751I
5.39544 + 2.30642I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.206280 + 0.477453I
a = 0.298919 0.359412I
b = 0.483737 1.004500I
5.10100 + 6.59660I 0
u = 1.206280 0.477453I
a = 0.298919 + 0.359412I
b = 0.483737 + 1.004500I
5.10100 6.59660I 0
u = 1.229770 + 0.437427I
a = 1.92339 0.66061I
b = 2.72237 0.04072I
9.19807 + 2.14805I 0
u = 1.229770 0.437427I
a = 1.92339 + 0.66061I
b = 2.72237 + 0.04072I
9.19807 2.14805I 0
u = 1.244210 + 0.417440I
a = 0.447603 0.447586I
b = 0.659667 1.055680I
11.84460 0.67393I 0
u = 1.244210 0.417440I
a = 0.447603 + 0.447586I
b = 0.659667 + 1.055680I
11.84460 + 0.67393I 0
u = 1.234540 + 0.466388I
a = 1.97965 + 0.72242I
b = 2.77697 + 0.08395I
15.5080 5.3599I 0
u = 1.234540 0.466388I
a = 1.97965 0.72242I
b = 2.77697 0.08395I
15.5080 + 5.3599I 0
u = 1.253720 + 0.412832I
a = 1.94107 + 0.56545I
b = 2.72237 0.04072I
9.19807 + 2.14805I 0
u = 1.253720 0.412832I
a = 1.94107 0.56545I
b = 2.72237 + 0.04072I
9.19807 2.14805I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.227120 + 0.498172I
a = 0.246914 + 0.411339I
b = 0.444768 + 1.068990I
11.2635 9.9819I 0
u = 1.227120 0.498172I
a = 0.246914 0.411339I
b = 0.444768 1.068990I
11.2635 + 9.9819I 0
u = 0.601464 + 0.292022I
a = 1.171440 0.785801I
b = 0.552964
0.756440 10.10943 + 0.I
u = 0.601464 0.292022I
a = 1.171440 + 0.785801I
b = 0.552964
0.756440 10.10943 + 0.I
u = 1.282090 + 0.416350I
a = 2.01278 0.52799I
b = 2.77697 + 0.08395I
15.5080 5.3599I 0
u = 1.282090 0.416350I
a = 2.01278 + 0.52799I
b = 2.77697 0.08395I
15.5080 + 5.3599I 0
u = 0.454568
a = 1.00108
b = 1.52118
6.50341 12.8060
u = 0.276686
a = 2.70201
b = 1.30690
6.49901 13.5250
15
III. I
u
3
= hb a 1, a
2
2a 1, u 1i
(i) Arc colorings
a
7
=
0
1
a
12
=
1
0
a
1
=
1
1
a
2
=
a
a + 1
a
6
=
1
1
a
3
=
a 1
a
a
5
=
a + 1
a
a
11
=
0
1
a
8
=
0
1
a
9
=
2
a
a
10
=
0
1
a
4
=
a + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
2
c
2
, c
6
(u + 1)
2
c
3
, c
4
, c
8
c
9
u
2
2
c
7
, c
10
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
8
c
9
(y 2)
2
c
7
, c
10
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.414214
b = 0.585786
8.22467 20.0000
u = 1.00000
a = 2.41421
b = 3.41421
8.22467 20.0000
19
IV. I
u
4
= hb 2, a 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
12
=
1
0
a
1
=
1
1
a
2
=
1
2
a
6
=
1
1
a
3
=
0
1
a
5
=
0
1
a
11
=
0
1
a
8
=
0
1
a
9
=
0
1
a
10
=
0
1
a
4
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
12
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 2.00000
3.28987 12.0000
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u 1)
3
)(u
28
+ 15u
27
+ ··· + 8u + 1)(u
48
+ 29u
47
+ ··· + 24u + 1)
c
2
, c
6
(u 1)(u + 1)
2
(u
28
+ u
27
+ ··· 2u 1)(u
48
+ u
47
+ ··· + 8u + 1)
c
3
, c
4
, c
9
u(u
2
2)(u
24
+ u
23
+ ··· + 2u
2
+ 1)
2
(u
28
3u
27
+ ··· 2u 2)
c
5
, c
12
((u 1)
2
)(u + 1)(u
28
+ u
27
+ ··· 2u 1)(u
48
+ u
47
+ ··· + 8u + 1)
c
7
, c
10
u
3
(u
24
+ 3u
23
+ ··· + 8u + 1)
2
(u
28
+ 3u
27
+ ··· 16u 16)
c
8
u(u
2
2)(u
24
3u
23
+ ··· + 20u 7)
2
(u
28
+ 9u
27
+ ··· + 162u + 38)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y 1)
3
)(y
28
+ y
27
+ ··· 16y + 1)(y
48
21y
47
+ ··· 200y + 1)
c
2
, c
5
, c
6
c
12
((y 1)
3
)(y
28
15y
27
+ ··· 8y + 1)(y
48
29y
47
+ ··· 24y + 1)
c
3
, c
4
, c
9
y(y 2)
2
(y
24
23y
23
+ ··· + 4y + 1)
2
(y
28
27y
27
+ ··· 12y + 4)
c
7
, c
10
y
3
(y
24
+ 25y
23
+ ··· 20y + 1)
2
(y
28
+ 25y
27
+ ··· 3840y + 256)
c
8
y(y 2)
2
(y
24
11y
23
+ ··· 904y + 49)
2
· (y
28
15y
27
+ ··· 18188y + 1444)
25