12a
0374
(K12a
0374
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 12 1 5 11 4 8 7
Solving Sequence
4,10 2,5
6 11 9 3 1 8 12 7
c
4
c
5
c
10
c
9
c
3
c
1
c
8
c
11
c
7
c
2
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
69
+ 4u
68
+ ··· + 4b 4, 2u
70
u
69
+ ··· + 4a 2, u
71
+ 2u
70
+ ··· 4u 2i
I
u
2
= h−20u
3
a
2
83u
3
a + ··· 210a + 142,
2u
3
a
2
+ u
3
a + a
3
2a
2
u 3u
2
a u
3
2a
2
au 2u
2
+ 2a u + 1, u
4
+ u
2
+ u + 1i
I
u
3
= h−u
3
+ b u + 1, u
3
+ 2u
2
+ 2a + 4, u
4
+ 2u
2
+ 2i
I
u
4
= h−5u
5
a
2
+ 15u
5
a + ··· 30a + 24, 2u
4
a
2
u
4
a 2a
2
u
2
+ 3u
3
a u
4
+ a
3
+ u
3
+ 2au u
2
+ 1,
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
I
v
1
= ha, b + 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 106 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3u
69
+4u
68
+· · ·+4b4, 2u
70
u
69
+· · ·+4a2, u
71
+2u
70
+· · ·4u2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
1
2
u
70
+
1
4
u
69
+ ···
3
2
u +
1
2
3
4
u
69
u
68
+ ··· +
1
2
u + 1
a
5
=
1
u
2
a
6
=
1
2
u
70
u
69
+ ··· + u +
3
2
u
70
u
69
+ ··· +
3
2
u + 1
a
11
=
u
u
a
9
=
u
3
u
3
+ u
a
3
=
u
6
u
4
+ 1
u
6
2u
4
u
2
a
1
=
1
2
u
70
+
17
2
u
68
+ ··· 2u
1
2
u
69
u
68
+ ··· +
1
2
u + 1
a
8
=
u
5
+ 2u
3
+ u
u
7
u
5
+ u
a
12
=
u
13
+ 4u
11
+ 7u
9
+ 6u
7
+ 2u
5
+ u
u
15
3u
13
4u
11
u
9
+ 2u
7
+ 2u
5
+ u
a
7
=
1
4
u
56
+
13
4
u
54
+ ··· +
1
2
u +
1
2
1
4
u
56
+
7
2
u
54
+ ···
1
2
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
70
4u
69
+ ··· + 4u
2
2u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
71
+ 34u
70
+ ··· + 9u + 1
c
2
, c
5
u
71
+ 2u
70
+ ··· + u + 1
c
3
u
71
+ 2u
70
+ ··· + 2308u + 202
c
4
, c
10
u
71
2u
70
+ ··· 4u + 2
c
6
, c
7
, c
12
u
71
2u
70
+ ··· + 13u + 1
c
8
u
71
10u
70
+ ··· 1608u + 86
c
9
u
71
+ 34u
70
+ ··· + 8u 4
c
11
u
71
+ 6u
70
+ ··· + 3584u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
71
+ 14y
70
+ ··· 39y 1
c
2
, c
5
y
71
34y
70
+ ··· + 9y 1
c
3
y
71
22y
70
+ ··· + 2098096y 40804
c
4
, c
10
y
71
+ 34y
70
+ ··· + 8y 4
c
6
, c
7
, c
12
y
71
66y
70
+ ··· 71y 1
c
8
y
71
+ 2y
70
+ ··· 2565048y 7396
c
9
y
71
+ 6y
70
+ ··· + 160y 16
c
11
y
71
+ 30y
70
+ ··· 3604480y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.513487 + 0.874485I
a = 0.612533 0.514676I
b = 1.80080 0.15793I
1.85439 1.13692I 1.95543 + 1.42420I
u = 0.513487 0.874485I
a = 0.612533 + 0.514676I
b = 1.80080 + 0.15793I
1.85439 + 1.13692I 1.95543 1.42420I
u = 0.063916 + 1.045220I
a = 0.654592 + 0.217537I
b = 0.109398 + 0.923327I
3.27038 + 2.34753I 0. 3.27632I
u = 0.063916 1.045220I
a = 0.654592 0.217537I
b = 0.109398 0.923327I
3.27038 2.34753I 0. + 3.27632I
u = 0.662691 + 0.682395I
a = 0.22635 + 2.15514I
b = 0.804600 + 0.848680I
3.81746 9.62606I 3.94934 + 8.10898I
u = 0.662691 0.682395I
a = 0.22635 2.15514I
b = 0.804600 0.848680I
3.81746 + 9.62606I 3.94934 8.10898I
u = 0.598790 + 0.882849I
a = 0.751708 + 0.316001I
b = 1.75329 0.07900I
3.22141 + 4.73439I 0
u = 0.598790 0.882849I
a = 0.751708 0.316001I
b = 1.75329 + 0.07900I
3.22141 4.73439I 0
u = 0.653038 + 0.634669I
a = 0.89558 + 1.18479I
b = 1.300590 + 0.058600I
6.19918 + 4.37861I 7.35250 4.00415I
u = 0.653038 0.634669I
a = 0.89558 1.18479I
b = 1.300590 0.058600I
6.19918 4.37861I 7.35250 + 4.00415I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.609895 + 0.669378I
a = 0.27854 2.39600I
b = 0.846051 0.904470I
1.24344 + 5.64932I 0.28766 7.43545I
u = 0.609895 0.669378I
a = 0.27854 + 2.39600I
b = 0.846051 + 0.904470I
1.24344 5.64932I 0.28766 + 7.43545I
u = 0.574306 + 0.932793I
a = 0.411839 + 1.347550I
b = 1.26857 + 1.08036I
5.32142 + 0.41145I 0
u = 0.574306 0.932793I
a = 0.411839 1.347550I
b = 1.26857 1.08036I
5.32142 0.41145I 0
u = 0.228446 + 0.838614I
a = 0.200792 0.458390I
b = 0.952126 0.674209I
1.97287 0.88244I 5.64875 + 2.81510I
u = 0.228446 0.838614I
a = 0.200792 + 0.458390I
b = 0.952126 + 0.674209I
1.97287 + 0.88244I 5.64875 2.81510I
u = 0.705528 + 0.505545I
a = 0.73725 1.67660I
b = 0.629527 0.851578I
8.46014 + 1.47314I 8.26420 2.78831I
u = 0.705528 0.505545I
a = 0.73725 + 1.67660I
b = 0.629527 + 0.851578I
8.46014 1.47314I 8.26420 + 2.78831I
u = 0.728728 + 0.451672I
a = 0.79061 1.61875I
b = 1.64604 + 0.34130I
8.18636 + 3.92680I 7.58253 3.44941I
u = 0.728728 0.451672I
a = 0.79061 + 1.61875I
b = 1.64604 0.34130I
8.18636 3.92680I 7.58253 + 3.44941I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.791382 + 0.314323I
a = 0.08069 + 1.75753I
b = 2.01785 0.39007I
1.92417 11.86780I 2.47956 + 7.18622I
u = 0.791382 0.314323I
a = 0.08069 1.75753I
b = 2.01785 + 0.39007I
1.92417 + 11.86780I 2.47956 7.18622I
u = 0.231462 + 1.132740I
a = 0.214026 + 0.113049I
b = 0.010233 0.583159I
0.12300 + 3.78560I 0
u = 0.231462 1.132740I
a = 0.214026 0.113049I
b = 0.010233 + 0.583159I
0.12300 3.78560I 0
u = 0.767148 + 0.333935I
a = 0.624267 + 1.096350I
b = 0.599647 + 0.673879I
4.70435 + 6.54204I 5.79038 3.77114I
u = 0.767148 0.333935I
a = 0.624267 1.096350I
b = 0.599647 0.673879I
4.70435 6.54204I 5.79038 + 3.77114I
u = 0.365604 + 1.116320I
a = 0.259723 + 0.097301I
b = 0.298705 0.667149I
1.29499 3.68632I 0
u = 0.365604 1.116320I
a = 0.259723 0.097301I
b = 0.298705 + 0.667149I
1.29499 + 3.68632I 0
u = 0.259361 + 1.146110I
a = 1.42463 + 0.50253I
b = 0.30824 + 1.96322I
7.44510 + 4.53951I 0
u = 0.259361 1.146110I
a = 1.42463 0.50253I
b = 0.30824 1.96322I
7.44510 4.53951I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.444604 + 1.090210I
a = 1.08820 1.03201I
b = 1.056750 0.021697I
4.15088 + 3.62944I 0
u = 0.444604 1.090210I
a = 1.08820 + 1.03201I
b = 1.056750 + 0.021697I
4.15088 3.62944I 0
u = 0.762418 + 0.303958I
a = 0.05370 1.95721I
b = 2.03025 + 0.46470I
2.99313 + 7.49280I 1.58304 5.99856I
u = 0.762418 0.303958I
a = 0.05370 + 1.95721I
b = 2.03025 0.46470I
2.99313 7.49280I 1.58304 + 5.99856I
u = 0.539794 + 1.054410I
a = 0.00276 + 2.26244I
b = 1.81446 + 2.37519I
0.18858 + 6.80979I 0
u = 0.539794 1.054410I
a = 0.00276 2.26244I
b = 1.81446 2.37519I
0.18858 6.80979I 0
u = 0.586595 + 1.034960I
a = 1.157370 0.316824I
b = 1.92458 + 0.42111I
6.90012 + 3.48785I 0
u = 0.586595 1.034960I
a = 1.157370 + 0.316824I
b = 1.92458 0.42111I
6.90012 3.48785I 0
u = 0.319539 + 1.145970I
a = 1.74893 + 0.70644I
b = 1.45388 0.03347I
8.13430 3.88779I 0
u = 0.319539 1.145970I
a = 1.74893 0.70644I
b = 1.45388 + 0.03347I
8.13430 + 3.88779I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.238257 + 1.165620I
a = 1.373680 0.332254I
b = 0.41998 1.74584I
2.75297 8.88088I 0
u = 0.238257 1.165620I
a = 1.373680 + 0.332254I
b = 0.41998 + 1.74584I
2.75297 + 8.88088I 0
u = 0.515095 + 1.084290I
a = 1.366990 + 0.207634I
b = 1.80978 0.87821I
0.42638 3.61243I 0
u = 0.515095 1.084290I
a = 1.366990 0.207634I
b = 1.80978 + 0.87821I
0.42638 + 3.61243I 0
u = 0.587342 + 1.068190I
a = 0.60859 2.11445I
b = 2.25733 1.62807I
6.37174 8.94657I 0
u = 0.587342 1.068190I
a = 0.60859 + 2.11445I
b = 2.25733 + 1.62807I
6.37174 + 8.94657I 0
u = 0.344494 + 1.171720I
a = 1.65618 0.61457I
b = 1.44820 + 0.09476I
4.05007 + 7.75611I 0
u = 0.344494 1.171720I
a = 1.65618 + 0.61457I
b = 1.44820 0.09476I
4.05007 7.75611I 0
u = 0.450939 + 1.138550I
a = 1.100670 + 0.417658I
b = 1.152270 0.460227I
0.84961 3.91539I 0
u = 0.450939 1.138550I
a = 1.100670 0.417658I
b = 1.152270 + 0.460227I
0.84961 + 3.91539I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.754204 + 0.167987I
a = 0.024470 + 0.354598I
b = 0.979566 + 0.287647I
0.06219 + 4.14718I 1.27520 4.45466I
u = 0.754204 0.167987I
a = 0.024470 0.354598I
b = 0.979566 0.287647I
0.06219 4.14718I 1.27520 + 4.45466I
u = 0.618925 + 0.436315I
a = 1.37547 + 1.71414I
b = 1.35948 0.60832I
1.60270 2.22709I 4.83541 + 5.16175I
u = 0.618925 0.436315I
a = 1.37547 1.71414I
b = 1.35948 + 0.60832I
1.60270 + 2.22709I 4.83541 5.16175I
u = 0.718360 + 0.226691I
a = 0.077274 0.287120I
b = 1.027460 0.246380I
4.12951 0.62986I 4.18016 + 0.87931I
u = 0.718360 0.226691I
a = 0.077274 + 0.287120I
b = 1.027460 + 0.246380I
4.12951 + 0.62986I 4.18016 0.87931I
u = 0.525110 + 1.137140I
a = 0.558679 + 1.098690I
b = 0.696208 + 0.110571I
6.74053 4.06635I 0
u = 0.525110 1.137140I
a = 0.558679 1.098690I
b = 0.696208 0.110571I
6.74053 + 4.06635I 0
u = 0.569447 + 1.127590I
a = 1.277050 + 0.206790I
b = 1.71725 0.54419I
2.36963 11.57700I 0
u = 0.569447 1.127590I
a = 1.277050 0.206790I
b = 1.71725 + 0.54419I
2.36963 + 11.57700I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.559285 + 1.134790I
a = 1.32203 2.59601I
b = 3.42052 1.38075I
5.42747 12.46830I 0
u = 0.559285 1.134790I
a = 1.32203 + 2.59601I
b = 3.42052 + 1.38075I
5.42747 + 12.46830I 0
u = 0.507677 + 1.159500I
a = 0.512282 0.989208I
b = 0.641800 0.033222I
2.94176 + 0.53130I 0
u = 0.507677 1.159500I
a = 0.512282 + 0.989208I
b = 0.641800 + 0.033222I
2.94176 0.53130I 0
u = 0.570790 + 1.141150I
a = 1.34343 + 2.41774I
b = 3.26126 + 1.18859I
0.5177 + 16.9633I 0
u = 0.570790 1.141150I
a = 1.34343 2.41774I
b = 3.26126 1.18859I
0.5177 16.9633I 0
u = 0.582646 + 0.406188I
a = 1.51368 + 1.21207I
b = 0.328432 + 0.887581I
1.57381 0.78601I 6.17132 + 3.59193I
u = 0.582646 0.406188I
a = 1.51368 1.21207I
b = 0.328432 0.887581I
1.57381 + 0.78601I 6.17132 3.59193I
u = 0.656905 + 0.092000I
a = 0.529384 + 0.412476I
b = 0.595806 + 0.310286I
2.09873 0.21123I 4.89242 0.61064I
u = 0.656905 0.092000I
a = 0.529384 0.412476I
b = 0.595806 0.310286I
2.09873 + 0.21123I 4.89242 + 0.61064I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.486728
a = 0.0713723
b = 0.936469
1.48811 6.39640
12
II. I
u
2
=
h−20u
3
a
2
83u
3
a+· · ·210a+142, 2u
3
a
2
+u
3
a+· · ·+2a+1, u
4
+u
2
+u+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
a
0.0947867a
2
u
3
+ 0.393365au
3
+ ··· + 0.995261a 0.672986
a
5
=
1
u
2
a
6
=
0.0426540a
2
u
3
0.327014au
3
+ ··· + 0.0521327a + 1.40284
0.0568720a
2
u
3
0.436019au
3
+ ··· 0.597156a + 1.20379
a
11
=
u
u
a
9
=
u
3
u
3
+ u
a
3
=
u
3
+ u
2
+ 1
u
3
+ u
2
+ u + 1
a
1
=
0.554502a
2
u
3
+ 0.251185au
3
+ ··· + 2.32227a 0.236967
0.388626a
2
u
3
+ 0.312796au
3
+ ··· + 2.08057a 0.559242
a
8
=
u
3
u
2
u
3
u
2
1
a
12
=
u
3
u
2
1
u
3
u
2
u 1
a
7
=
0.0568720a
2
u
3
0.563981au
3
+ ··· 0.402844a + 2.79621
0.175355a
2
u
3
1.32227au
3
+ ··· 0.658768a + 2.45498
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
+ 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 8u
11
+ ··· u + 1
c
2
, c
5
, c
6
c
7
, c
12
u
12
4u
10
+ 6u
8
3u
6
u
4
+ u
3
+ u
2
u + 1
c
3
(u
4
3u
3
+ 4u
2
3u + 2)
3
c
4
, c
10
, c
11
(u
4
+ u
2
u + 1)
3
c
8
, c
9
(u
4
+ 2u
3
+ 3u
2
+ u + 1)
3
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
8y
11
+ ··· + y + 1
c
2
, c
5
, c
6
c
7
, c
12
y
12
8y
11
+ ··· + y + 1
c
3
(y
4
y
3
+ 2y
2
+ 7y + 4)
3
c
4
, c
10
, c
11
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
c
8
, c
9
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
3
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 1.07789 1.00535I
b = 0.987548 + 0.089110I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 + 0.585652I
a = 0.293671 + 0.061787I
b = 1.287260 0.020553I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 + 0.585652I
a = 0.91940 + 2.76614I
b = 0.795135 + 1.102750I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 0.585652I
a = 1.07789 + 1.00535I
b = 0.987548 0.089110I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 0.585652I
a = 0.293671 0.061787I
b = 1.287260 + 0.020553I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 0.585652I
a = 0.91940 2.76614I
b = 0.795135 1.102750I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 + 1.120870I
a = 1.287880 0.217456I
b = 1.70041 + 0.60693I
2.62503 + 7.64338I 1.77019 6.51087I
u = 0.547424 + 1.120870I
a = 0.550722 1.202610I
b = 0.710961 0.189039I
2.62503 + 7.64338I 1.77019 6.51087I
u = 0.547424 + 1.120870I
a = 1.13499 + 2.86075I
b = 3.50622 + 1.82385I
2.62503 + 7.64338I 1.77019 6.51087I
u = 0.547424 1.120870I
a = 1.287880 + 0.217456I
b = 1.70041 0.60693I
2.62503 7.64338I 1.77019 + 6.51087I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 1.120870I
a = 0.550722 + 1.202610I
b = 0.710961 + 0.189039I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 1.120870I
a = 1.13499 2.86075I
b = 3.50622 1.82385I
2.62503 7.64338I 1.77019 + 6.51087I
17
III. I
u
3
= h−u
3
+ b u + 1, u
3
+ 2u
2
+ 2a + 4, u
4
+ 2u
2
+ 2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
1
2
u
3
u
2
2
u
3
+ u 1
a
5
=
1
u
2
a
6
=
1
2
u
3
u
2
1
u
3
u
2
+ u 1
a
11
=
u
u
a
9
=
u
3
u
3
+ u
a
3
=
1
u
2
a
1
=
1
2
u
3
u
2
1
u
3
u
2
+ u 1
a
8
=
u
u
a
12
=
u
u
a
7
=
1
2
u
3
u
2
u 1
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
(u 1)
4
c
2
, c
12
(u + 1)
4
c
3
, c
8
u
4
2u
2
+ 2
c
4
, c
10
u
4
+ 2u
2
+ 2
c
9
(u
2
2u + 2)
2
c
11
u
4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
(y 1)
4
c
3
, c
8
(y
2
2y + 2)
2
c
4
, c
10
(y
2
+ 2y + 2)
2
c
9
(y
2
+ 4)
2
c
11
y
4
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.455090 + 1.098680I
a = 1.77689 1.32180I
b = 2.09868 + 0.45509I
2.46740 + 3.66386I 4.00000 4.00000I
u = 0.455090 1.098680I
a = 1.77689 + 1.32180I
b = 2.09868 0.45509I
2.46740 3.66386I 4.00000 + 4.00000I
u = 0.455090 + 1.098680I
a = 0.223113 + 0.678203I
b = 0.098684 + 0.455090I
2.46740 3.66386I 4.00000 + 4.00000I
u = 0.455090 1.098680I
a = 0.223113 0.678203I
b = 0.098684 0.455090I
2.46740 + 3.66386I 4.00000 4.00000I
21
IV. I
u
4
= h−5u
5
a
2
+ 15u
5
a + · · · 30a + 24, 2u
4
a
2
u
4
a + · · · + a
3
+
1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
a
0.217391a
2
u
5
0.652174au
5
+ ··· + 1.30435a 1.04348
a
5
=
1
u
2
a
6
=
0.391304a
2
u
5
+ 0.173913au
5
+ ··· + 0.652174a + 1.47826
0.0869565a
2
u
5
+ 0.260870au
5
+ ··· 0.521739a + 1.21739
a
11
=
u
u
a
9
=
u
3
u
3
+ u
a
3
=
u
5
+ u
4
2u
3
+ 2u
2
2u + 2
u
5
2u
3
+ u
2
2u + 1
a
1
=
0.869565a
2
u
5
0.608696au
5
+ ··· + 2.21739a 2.17391
0.391304a
2
u
5
1.17391au
5
+ ··· + 2.34783a 1.47826
a
8
=
u
5
+ 2u
3
+ u
1
a
12
=
u
5
u
4
+ 2u
3
2u
2
+ 2u 2
u
5
+ 2u
3
u
2
+ 2u 1
a
7
=
0.826087a
2
u
5
+ 1.47826au
5
+ ··· 0.956522a + 3.56522
0.173913a
2
u
5
+ 1.52174au
5
+ ··· 1.04348a + 2.43478
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 2
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 12u
17
+ ··· 2u
3
+ 1
c
2
, c
5
, c
6
c
7
, c
12
u
18
6u
16
+ ··· + 2u + 1
c
3
(u
3
+ u
2
1)
6
c
4
, c
10
, c
11
(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
3
c
8
, c
9
(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
3
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
12y
17
+ ··· 16y
2
+ 1
c
2
, c
5
, c
6
c
7
, c
12
y
18
12y
17
+ ··· + 2y
3
+ 1
c
3
(y
3
y
2
+ 2y 1)
6
c
4
, c
10
, c
11
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
c
8
, c
9
(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
3
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.223235 1.354840I
b = 0.72220 1.74636I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 + 1.001300I
a = 1.21428 + 0.80097I
b = 2.51209 0.18863I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 + 1.001300I
a = 0.92954 + 1.56791I
b = 1.007320 + 0.334757I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 1.001300I
a = 0.223235 + 1.354840I
b = 0.72220 + 1.74636I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 1.001300I
a = 1.21428 0.80097I
b = 2.51209 + 0.18863I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 1.001300I
a = 0.92954 1.56791I
b = 1.007320 0.334757I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.284920 + 1.115140I
a = 1.41549 0.81369I
b = 0.00186 2.26530I
4.40332 5.01951 + 0.I
u = 0.284920 + 1.115140I
a = 0.0617346 0.0738124I
b = 0.083715 + 0.613470I
4.40332 5.01951 + 0.I
u = 0.284920 + 1.115140I
a = 1.90738 0.79608I
b = 1.48427 0.03176I
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 1.41549 + 0.81369I
b = 0.00186 + 2.26530I
4.40332 5.01951 + 0.I
25
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.284920 1.115140I
a = 0.0617346 + 0.0738124I
b = 0.083715 0.613470I
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 1.90738 + 0.79608I
b = 1.48427 + 0.03176I
4.40332 5.01951 + 0.I
u = 0.713912 + 0.305839I
a = 0.748472 0.975138I
b = 0.538111 0.638486I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 + 0.305839I
a = 0.157375 + 0.249093I
b = 1.093530 + 0.232040I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 + 0.305839I
a = 0.20612 + 2.32629I
b = 1.99869 0.60760I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 0.305839I
a = 0.748472 + 0.975138I
b = 0.538111 + 0.638486I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 0.305839I
a = 0.157375 0.249093I
b = 1.093530 0.232040I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 0.305839I
a = 0.20612 2.32629I
b = 1.99869 + 0.60760I
0.26574 + 2.82812I 1.50976 2.97945I
26
V. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
11
=
1
0
a
9
=
1
0
a
3
=
1
0
a
1
=
1
1
a
8
=
1
0
a
12
=
1
0
a
7
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
u
c
5
, c
6
, c
7
u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
y 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
y
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
30
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
12
+ 8u
11
+ ··· u + 1)(u
18
+ 12u
17
+ ··· 2u
3
+ 1)
· (u
71
+ 34u
70
+ ··· + 9u + 1)
c
2
(u 1)(u + 1)
4
(u
12
4u
10
+ 6u
8
3u
6
u
4
+ u
3
+ u
2
u + 1)
· (u
18
6u
16
+ ··· + 2u + 1)(u
71
+ 2u
70
+ ··· + u + 1)
c
3
u(u
3
+ u
2
1)
6
(u
4
2u
2
+ 2)(u
4
3u
3
+ 4u
2
3u + 2)
3
· (u
71
+ 2u
70
+ ··· + 2308u + 202)
c
4
, c
10
u(u
4
+ u
2
u + 1)
3
(u
4
+ 2u
2
+ 2)(u
6
+ u
5
+ ··· + 2u + 1)
3
· (u
71
2u
70
+ ··· 4u + 2)
c
5
(u 1)
4
(u + 1)(u
12
4u
10
+ 6u
8
3u
6
u
4
+ u
3
+ u
2
u + 1)
· (u
18
6u
16
+ ··· + 2u + 1)(u
71
+ 2u
70
+ ··· + u + 1)
c
6
, c
7
(u 1)
4
(u + 1)(u
12
4u
10
+ 6u
8
3u
6
u
4
+ u
3
+ u
2
u + 1)
· (u
18
6u
16
+ ··· + 2u + 1)(u
71
2u
70
+ ··· + 13u + 1)
c
8
u(u
4
2u
2
+ 2)(u
4
+ 2u
3
+ 3u
2
+ u + 1)
3
(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
3
· (u
71
10u
70
+ ··· 1608u + 86)
c
9
u(u
2
2u + 2)
2
(u
4
+ 2u
3
+ 3u
2
+ u + 1)
3
(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
3
· (u
71
+ 34u
70
+ ··· + 8u 4)
c
11
u
5
(u
4
+ u
2
u + 1)
3
(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
3
· (u
71
+ 6u
70
+ ··· + 3584u + 256)
c
12
(u 1)(u + 1)
4
(u
12
4u
10
+ 6u
8
3u
6
u
4
+ u
3
+ u
2
u + 1)
· (u
18
6u
16
+ ··· + 2u + 1)(u
71
2u
70
+ ··· + 13u + 1)
31
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
12
8y
11
+ ··· + y + 1)(y
18
12y
17
+ ··· 16y
2
+ 1)
· (y
71
+ 14y
70
+ ··· 39y 1)
c
2
, c
5
((y 1)
5
)(y
12
8y
11
+ ··· + y + 1)(y
18
12y
17
+ ··· + 2y
3
+ 1)
· (y
71
34y
70
+ ··· + 9y 1)
c
3
y(y
2
2y + 2)
2
(y
3
y
2
+ 2y 1)
6
(y
4
y
3
+ 2y
2
+ 7y + 4)
3
· (y
71
22y
70
+ ··· + 2098096y 40804)
c
4
, c
10
y(y
2
+ 2y + 2)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
· (y
71
+ 34y
70
+ ··· + 8y 4)
c
6
, c
7
, c
12
((y 1)
5
)(y
12
8y
11
+ ··· + y + 1)(y
18
12y
17
+ ··· + 2y
3
+ 1)
· (y
71
66y
70
+ ··· 71y 1)
c
8
y(y
2
2y + 2)
2
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
3
· (y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
3
· (y
71
+ 2y
70
+ ··· 2565048y 7396)
c
9
y(y
2
+ 4)
2
(y
4
+ 2y
3
+ ··· + 5y + 1)
3
(y
6
y
5
+ ··· + 8y
2
+ 1)
3
· (y
71
+ 6y
70
+ ··· + 160y 16)
c
11
y
5
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
· (y
71
+ 30y
70
+ ··· 3604480y 65536)
32