12a
0375
(K12a
0375
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 12 1 11 4 5 8 7
Solving Sequence
4,10 2,5
6 11 9 3 1 8 12 7
c
4
c
5
c
10
c
9
c
3
c
1
c
8
c
11
c
7
c
2
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−4u
42
+ u
41
+ ··· + 4b 4, 2u
42
u
41
+ ··· + 4a 2, u
43
2u
42
+ ··· + 2u
2
2i
I
u
2
= h2u
5
a 2u
5
a
2
u
2
8u
3
a + 2u
2
a + 8u
3
+ 2a
2
+ 8au 2u
2
+ b 4a 8u + 4,
2u
5
a
2
u
5
a 6u
3
a
2
+ u
5
+ 2a
2
u
2
+ 6u
3
a + a
3
+ 4a
2
u u
2
a 4u
3
4a
2
8au + u
2
+ 5a + 4u 3,
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
I
u
3
= hb + u 1, 2a u, u
2
2i
I
v
1
= ha, b + 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4u
42
+u
41
+· · ·+4b4, 2u
42
u
41
+· · ·+4a2, u
43
2u
42
+· · ·+2u
2
2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
1
2
u
42
+
1
4
u
41
+ ···
1
2
u +
1
2
u
42
1
4
u
41
+ ··· +
1
2
u + 1
a
5
=
1
u
2
a
6
=
1
2
u
42
23
2
u
40
+ ··· + u
2
+
3
2
u
42
+
1
4
u
41
+ ···
1
2
u 1
a
11
=
u
u
3
+ u
a
9
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
1
2
u
42
+
21
2
u
40
+ ··· u
1
2
u
42
22u
40
+ ··· +
1
2
u + 1
a
8
=
u
5
2u
3
u
u
7
+ 3u
5
2u
3
+ u
a
12
=
u
9
4u
7
+ 3u
5
+ 2u
3
+ u
u
11
+ 5u
9
8u
7
+ 5u
5
3u
3
+ u
a
7
=
1
4
u
32
17
4
u
30
+ ···
3
2
u +
1
2
1
4
u
32
+ 4u
30
+ ···
1
2
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
42
46u
40
+ ··· 2u + 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
43
+ 22u
42
+ ··· + 9u + 1
c
2
, c
5
u
43
+ 2u
42
+ ··· + u 1
c
3
, c
4
, c
9
c
10
u
43
+ 2u
42
+ ··· 2u
2
+ 2
c
6
, c
7
, c
12
u
43
2u
42
+ ··· 11u 1
c
8
, c
11
u
43
+ 6u
42
+ ··· + 160u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
43
+ 2y
42
+ ··· + 53y 1
c
2
, c
5
y
43
22y
42
+ ··· + 9y 1
c
3
, c
4
, c
9
c
10
y
43
46y
42
+ ··· + 8y 4
c
6
, c
7
, c
12
y
43
38y
42
+ ··· + 89y 1
c
8
, c
11
y
43
+ 30y
42
+ ··· + 26112y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.591746 + 0.636717I
a = 1.23572 1.63525I
b = 0.100756 + 0.318643I
1.84282 + 10.94570I 6.30092 8.93673I
u = 0.591746 0.636717I
a = 1.23572 + 1.63525I
b = 0.100756 0.318643I
1.84282 10.94570I 6.30092 + 8.93673I
u = 0.765729 + 0.373369I
a = 0.32757 + 1.59857I
b = 0.134514 0.340307I
5.12970 5.35425I 12.2003 + 7.7214I
u = 0.765729 0.373369I
a = 0.32757 1.59857I
b = 0.134514 + 0.340307I
5.12970 + 5.35425I 12.2003 7.7214I
u = 0.826606 + 0.202990I
a = 0.511476 + 0.581636I
b = 0.430064 + 0.050748I
6.06160 + 0.79364I 14.9061 0.8864I
u = 0.826606 0.202990I
a = 0.511476 0.581636I
b = 0.430064 0.050748I
6.06160 0.79364I 14.9061 + 0.8864I
u = 0.546701 + 0.616087I
a = 1.33752 + 1.76286I
b = 0.098208 0.285427I
6.30176 6.51240I 1.84350 + 6.82731I
u = 0.546701 0.616087I
a = 1.33752 1.76286I
b = 0.098208 + 0.285427I
6.30176 + 6.51240I 1.84350 6.82731I
u = 0.582396 + 0.579810I
a = 0.659858 0.192915I
b = 0.279952 0.384491I
1.26998 5.99398I 9.54778 + 6.06507I
u = 0.582396 0.579810I
a = 0.659858 + 0.192915I
b = 0.279952 + 0.384491I
1.26998 + 5.99398I 9.54778 6.06507I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.403178 + 0.680325I
a = 0.873527 + 0.218379I
b = 0.795082 0.902473I
2.40444 6.51462I 5.07632 + 3.55431I
u = 0.403178 0.680325I
a = 0.873527 0.218379I
b = 0.795082 + 0.902473I
2.40444 + 6.51462I 5.07632 3.55431I
u = 0.443849 + 0.633747I
a = 0.902439 0.228432I
b = 0.888609 + 0.891580I
6.60622 + 2.27578I 0.698054 0.385736I
u = 0.443849 0.633747I
a = 0.902439 + 0.228432I
b = 0.888609 0.891580I
6.60622 2.27578I 0.698054 + 0.385736I
u = 0.377654 + 0.599705I
a = 0.738904 0.108280I
b = 0.103319 0.421977I
0.67597 + 1.96643I 8.14582 + 0.08681I
u = 0.377654 0.599705I
a = 0.738904 + 0.108280I
b = 0.103319 + 0.421977I
0.67597 1.96643I 8.14582 0.08681I
u = 1.34352
a = 0.457746
b = 1.25945
6.42503 14.7720
u = 0.596066 + 0.273723I
a = 0.15234 2.25587I
b = 0.108473 + 0.195176I
0.17994 + 3.15116I 7.13825 9.28828I
u = 0.596066 0.273723I
a = 0.15234 + 2.25587I
b = 0.108473 0.195176I
0.17994 3.15116I 7.13825 + 9.28828I
u = 0.084134 + 0.604122I
a = 0.845349 0.074679I
b = 0.465947 + 0.534008I
2.98218 + 1.98828I 8.33137 3.20557I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.084134 0.604122I
a = 0.845349 + 0.074679I
b = 0.465947 0.534008I
2.98218 1.98828I 8.33137 + 3.20557I
u = 1.43197
a = 0.0229961
b = 1.00111
3.32572 0
u = 1.43137 + 0.20558I
a = 0.132330 0.142499I
b = 0.955154 0.077955I
3.46742 + 3.34369I 0
u = 1.43137 0.20558I
a = 0.132330 + 0.142499I
b = 0.955154 + 0.077955I
3.46742 3.34369I 0
u = 1.47158 + 0.11058I
a = 0.881376 0.770659I
b = 1.53453 + 1.36753I
6.53226 + 0.41130I 0
u = 1.47158 0.11058I
a = 0.881376 + 0.770659I
b = 1.53453 1.36753I
6.53226 0.41130I 0
u = 1.47924 + 0.17979I
a = 0.131246 + 0.108669I
b = 0.986913 + 0.072464I
0.365210 + 0.609893I 0
u = 1.47924 0.17979I
a = 0.131246 0.108669I
b = 0.986913 0.072464I
0.365210 0.609893I 0
u = 0.463968
a = 1.94534
b = 0.138255
0.736315 13.7490
u = 1.53818 + 0.18818I
a = 0.21264 + 2.03609I
b = 0.50972 4.35591I
0.59349 + 9.42918I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.53818 0.18818I
a = 0.21264 2.03609I
b = 0.50972 + 4.35591I
0.59349 9.42918I 0
u = 1.55142 + 0.05723I
a = 0.80889 2.01985I
b = 1.44195 + 4.18487I
7.05051 4.24670I 0
u = 1.55142 0.05723I
a = 0.80889 + 2.01985I
b = 1.44195 4.18487I
7.05051 + 4.24670I 0
u = 1.55532 + 0.17621I
a = 0.711365 0.950566I
b = 0.99205 + 1.76418I
8.38956 + 8.75469I 0
u = 1.55532 0.17621I
a = 0.711365 + 0.950566I
b = 0.99205 1.76418I
8.38956 8.75469I 0
u = 1.55776 + 0.19984I
a = 0.19109 1.91237I
b = 0.48048 + 4.13035I
5.2865 14.0160I 0
u = 1.55776 0.19984I
a = 0.19109 + 1.91237I
b = 0.48048 4.13035I
5.2865 + 14.0160I 0
u = 0.155892 + 0.389253I
a = 0.939590 + 0.061625I
b = 0.782027 0.295786I
1.51738 0.78597I 1.81615 + 1.01522I
u = 0.155892 0.389253I
a = 0.939590 0.061625I
b = 0.782027 + 0.295786I
1.51738 + 0.78597I 1.81615 1.01522I
u = 1.60026 + 0.04435I
a = 0.79147 + 1.29002I
b = 1.26150 2.64623I
14.2395 1.6305I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60026 0.04435I
a = 0.79147 1.29002I
b = 1.26150 + 2.64623I
14.2395 + 1.6305I 0
u = 1.59968 + 0.08511I
a = 0.45217 + 1.80198I
b = 0.69300 3.81498I
13.1581 + 6.9538I 0
u = 1.59968 0.08511I
a = 0.45217 1.80198I
b = 0.69300 + 3.81498I
13.1581 6.9538I 0
9
II. I
u
2
= h2u
5
a 2u
5
+ · · · 4a + 4, 2u
5
a
2
u
5
a + · · · + 5a 3, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
a
2u
5
a + 2u
5
+ ··· + 4a 4
a
5
=
1
u
2
a
6
=
2u
5
a + 2u
5
+ ··· + 5a 4
2u
5
a 2u
5
+ ··· 4a + 4
a
11
=
u
u
3
+ u
a
9
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
u
5
a
2
2u
5
a + ··· a
2
+ a
u
5
a
2
2u
5
a + ··· + 6a 6
a
8
=
u
5
2u
3
u
u
5
+ u
4
+ 2u
3
3u
2
+ u + 1
a
12
=
u
2
1
u
2
a
7
=
u
4
a
2
+ u
4
a 2a
2
u
2
3u
2
a + 2u
2
+ 3a 2
2u
5
a 2u
5
+ ··· 6a + 6
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
8u + 10
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 12u
17
+ ··· + 5u + 1
c
2
, c
5
, c
6
c
7
, c
12
u
18
6u
16
+ ··· + u 1
c
3
, c
4
, c
9
c
10
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
3
c
8
, c
11
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
3
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
12y
17
+ ··· 17y + 1
c
2
, c
5
, c
6
c
7
, c
12
y
18
12y
17
+ ··· 5y + 1
c
3
, c
4
, c
9
c
10
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
3
c
8
, c
11
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.941013 + 0.239784I
b = 1.009960 0.876429I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.493180 + 0.575288I
a = 0.703854 + 0.163676I
b = 0.204229 + 0.389849I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.493180 + 0.575288I
a = 1.46493 2.00338I
b = 0.086351 + 0.244114I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.493180 0.575288I
a = 0.941013 0.239784I
b = 1.009960 + 0.876429I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.493180 0.575288I
a = 0.703854 0.163676I
b = 0.204229 0.389849I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.493180 0.575288I
a = 1.46493 + 2.00338I
b = 0.086351 0.244114I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.483672
a = 1.12121
b = 1.42631
0.738851 13.4170
u = 0.483672
a = 1.85982 + 0.59462I
b = 0.146924 0.011821I
0.738851 13.4170
u = 0.483672
a = 1.85982 0.59462I
b = 0.146924 + 0.011821I
0.738851 13.4170
u = 1.52087 + 0.16310I
a = 0.751848 + 0.903227I
b = 1.13095 1.63417I
3.69558 4.59213I 8.58114 + 3.20482I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.52087 + 0.16310I
a = 0.137996 0.084846I
b = 1.011050 0.070016I
3.69558 4.59213I 8.58114 + 3.20482I
u = 1.52087 + 0.16310I
a = 0.15868 2.23953I
b = 0.39625 + 4.72775I
3.69558 4.59213I 8.58114 + 3.20482I
u = 1.52087 0.16310I
a = 0.751848 0.903227I
b = 1.13095 + 1.63417I
3.69558 + 4.59213I 8.58114 3.20482I
u = 1.52087 0.16310I
a = 0.137996 + 0.084846I
b = 1.011050 + 0.070016I
3.69558 + 4.59213I 8.58114 3.20482I
u = 1.52087 0.16310I
a = 0.15868 + 2.23953I
b = 0.39625 4.72775I
3.69558 + 4.59213I 8.58114 3.20482I
u = 1.53904
a = 0.110457
b = 1.03249
7.66009 12.2690
u = 1.53904
a = 1.20042 + 1.54308I
b = 2.19632 3.14900I
7.66009 12.2690
u = 1.53904
a = 1.20042 1.54308I
b = 2.19632 + 3.14900I
7.66009 12.2690
14
III. I
u
3
= hb + u 1, 2a u, u
2
2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
2
=
1
2
u
u + 1
a
5
=
1
2
a
6
=
1
2
u + 1
u 1
a
11
=
u
u
a
9
=
u
u
a
3
=
1
2
a
1
=
1
2
u + 1
u 1
a
8
=
u
u
a
12
=
u
u
a
7
=
1
2
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
(u 1)
2
c
2
, c
12
(u + 1)
2
c
3
, c
4
, c
9
c
10
u
2
2
c
8
, c
11
u
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
(y 1)
2
c
3
, c
4
, c
9
c
10
(y 2)
2
c
8
, c
11
y
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.707107
b = 0.414214
4.93480 8.00000
u = 1.41421
a = 0.707107
b = 2.41421
4.93480 8.00000
18
IV. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
11
=
1
0
a
9
=
1
0
a
3
=
1
0
a
1
=
1
1
a
8
=
1
0
a
12
=
1
0
a
7
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
u
c
5
, c
6
, c
7
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
y 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
18
+ 12u
17
+ ··· + 5u + 1)(u
43
+ 22u
42
+ ··· + 9u + 1)
c
2
(u 1)(u + 1)
2
(u
18
6u
16
+ ··· + u 1)(u
43
+ 2u
42
+ ··· + u 1)
c
3
, c
4
, c
9
c
10
u(u
2
2)(u
6
u
5
+ ··· + u 1)
3
(u
43
+ 2u
42
+ ··· 2u
2
+ 2)
c
5
((u 1)
2
)(u + 1)(u
18
6u
16
+ ··· + u 1)(u
43
+ 2u
42
+ ··· + u 1)
c
6
, c
7
((u 1)
2
)(u + 1)(u
18
6u
16
+ ··· + u 1)(u
43
2u
42
+ ··· 11u 1)
c
8
, c
11
u
3
(u
6
+ u
5
+ ··· + u 1)
3
(u
43
+ 6u
42
+ ··· + 160u + 16)
c
12
(u 1)(u + 1)
2
(u
18
6u
16
+ ··· + u 1)(u
43
2u
42
+ ··· 11u 1)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
3
)(y
18
12y
17
+ ··· 17y + 1)(y
43
+ 2y
42
+ ··· + 53y 1)
c
2
, c
5
((y 1)
3
)(y
18
12y
17
+ ··· 5y + 1)(y
43
22y
42
+ ··· + 9y 1)
c
3
, c
4
, c
9
c
10
y(y 2)
2
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
3
· (y
43
46y
42
+ ··· + 8y 4)
c
6
, c
7
, c
12
((y 1)
3
)(y
18
12y
17
+ ··· 5y + 1)(y
43
38y
42
+ ··· + 89y 1)
c
8
, c
11
y
3
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
3
· (y
43
+ 30y
42
+ ··· + 26112y 256)
24