12a
0380
(K12a
0380
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 1 12 11 5 4 8 7
Solving Sequence
4,11
10 5 9 3 8 12 7 1 2 6
c
10
c
4
c
9
c
3
c
8
c
11
c
7
c
12
c
1
c
6
c
2
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
38
+ u
37
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
38
+ u
37
+ · · · + u + 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
8
=
u
4
u
2
+ 1
u
4
+ 2u
2
a
12
=
u
8
+ 3u
6
+ u
4
2u
2
+ 1
u
8
4u
6
4u
4
a
7
=
u
12
5u
10
7u
8
+ 2u
4
3u
2
+ 1
u
12
+ 6u
10
+ 12u
8
+ 8u
6
+ u
4
+ 2u
2
a
1
=
u
16
+ 7u
14
+ 17u
12
+ 14u
10
u
8
+ 2u
6
+ 6u
4
4u
2
+ 1
u
16
8u
14
24u
12
32u
10
18u
8
8u
6
8u
4
a
2
=
u
28
+ 13u
26
+ ··· 5u
2
+ 1
u
30
+ 14u
28
+ ··· 16u
4
+ u
2
a
6
=
u
20
9u
18
+ ··· 5u
2
+ 1
u
20
+ 10u
18
+ 40u
16
+ 80u
14
+ 83u
12
+ 50u
10
+ 36u
8
+ 24u
6
+ u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
36
4u
35
72u
34
68u
33
580u
32
516u
31
2748u
30
2292u
29
8476u
28
6576u
27
17864u
26
12736u
25
26568u
24
17112u
23
29228u
22
16736u
21
26160u
20
13388u
19
21072u
18
9832u
17
14636u
16
5896u
15
7812u
14
2336u
13
3700u
12
856u
11
1816u
10
336u
9
456u
8
+ 80u
7
56u
6
+ 40u
5
68u
4
+ 20u
3
+ 24u
2
+ 16u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
38
+ 23u
37
+ ··· + 5u + 1
c
2
, c
5
u
38
+ u
37
+ ··· + u + 1
c
3
u
38
u
37
+ ··· + 81u + 317
c
4
, c
9
, c
10
u
38
+ u
37
+ ··· + u + 1
c
6
, c
7
, c
8
c
11
, c
12
u
38
+ 3u
37
+ ··· + 15u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
38
15y
37
+ ··· + 3y + 1
c
2
, c
5
y
38
23y
37
+ ··· 5y + 1
c
3
y
38
+ 25y
37
+ ··· + 1416135y + 100489
c
4
, c
9
, c
10
y
38
+ 37y
37
+ ··· 5y + 1
c
6
, c
7
, c
8
c
11
, c
12
y
38
+ 53y
37
+ ··· + 123y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.699030 + 0.516783I
16.5834 + 2.6642I 1.43407 0.13323I
u = 0.699030 0.516783I
16.5834 2.6642I 1.43407 + 0.13323I
u = 0.709471 + 0.500003I
16.5259 7.3585I 1.27138 + 5.67363I
u = 0.709471 0.500003I
16.5259 + 7.3585I 1.27138 5.67363I
u = 0.699159 + 0.504973I
12.61000 + 2.32929I 1.79922 2.79577I
u = 0.699159 0.504973I
12.61000 2.32929I 1.79922 + 2.79577I
u = 0.046655 + 1.266040I
2.65817 + 1.73113I 5.04604 4.55747I
u = 0.046655 1.266040I
2.65817 1.73113I 5.04604 + 4.55747I
u = 0.617788 + 0.394340I
5.75531 + 5.89610I 0.12847 7.53727I
u = 0.617788 0.394340I
5.75531 5.89610I 0.12847 + 7.53727I
u = 0.548294 + 0.475497I
6.07647 2.03534I 1.49342 + 0.25635I
u = 0.548294 0.475497I
6.07647 + 2.03534I 1.49342 0.25635I
u = 0.553289 + 0.398678I
2.61813 1.78595I 2.96437 + 4.13592I
u = 0.553289 0.398678I
2.61813 + 1.78595I 2.96437 4.13592I
u = 0.108014 + 1.329890I
3.47258 + 1.99659I 3.63851 3.32884I
u = 0.108014 1.329890I
3.47258 1.99659I 3.63851 + 3.32884I
u = 0.165337 + 1.349130I
5.18486 5.72137I 0. + 8.45786I
u = 0.165337 1.349130I
5.18486 + 5.72137I 0. 8.45786I
u = 0.070878 + 1.410250I
7.16634 0.25397I 0
u = 0.070878 1.410250I
7.16634 + 0.25397I 0
u = 0.529018 + 0.191801I
0.35654 3.20662I 5.93778 + 9.20174I
u = 0.529018 0.191801I
0.35654 + 3.20662I 5.93778 9.20174I
u = 0.19412 + 1.44071I
8.51769 4.51489I 0
u = 0.19412 1.44071I
8.51769 + 4.51489I 0
u = 0.21879 + 1.44502I
11.6645 + 8.9374I 0
u = 0.21879 1.44502I
11.6645 8.9374I 0
u = 0.18046 + 1.46649I
12.33810 + 0.59580I 0
u = 0.18046 1.46649I
12.33810 0.59580I 0
u = 0.24198 + 1.50771I
19.1586 + 5.7629I 0
u = 0.24198 1.50771I
19.1586 5.7629I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24749 + 1.50794I
16.4216 10.8522I 0
u = 0.24749 1.50794I
16.4216 + 10.8522I 0
u = 0.23899 + 1.51269I
16.2818 0.7569I 0
u = 0.23899 1.51269I
16.2818 + 0.7569I 0
u = 0.455694 + 0.048977I
0.826554 + 0.063442I 12.58366 0.84901I
u = 0.455694 0.048977I
0.826554 0.063442I 12.58366 + 0.84901I
u = 0.209212 + 0.399902I
1.53939 + 0.81265I 1.98721 0.48886I
u = 0.209212 0.399902I
1.53939 0.81265I 1.98721 + 0.48886I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
38
+ 23u
37
+ ··· + 5u + 1
c
2
, c
5
u
38
+ u
37
+ ··· + u + 1
c
3
u
38
u
37
+ ··· + 81u + 317
c
4
, c
9
, c
10
u
38
+ u
37
+ ··· + u + 1
c
6
, c
7
, c
8
c
11
, c
12
u
38
+ 3u
37
+ ··· + 15u + 3
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
38
15y
37
+ ··· + 3y + 1
c
2
, c
5
y
38
23y
37
+ ··· 5y + 1
c
3
y
38
+ 25y
37
+ ··· + 1416135y + 100489
c
4
, c
9
, c
10
y
38
+ 37y
37
+ ··· 5y + 1
c
6
, c
7
, c
8
c
11
, c
12
y
38
+ 53y
37
+ ··· + 123y + 9
8