12a
0384
(K12a
0384
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 7 2 1 12 11 4 5 8
Solving Sequence
5,10
4 11 12 9 3 8 1 7 6 2
c
4
c
10
c
11
c
9
c
3
c
8
c
12
c
7
c
5
c
2
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
75
u
74
+ ··· u
2
1i
* 1 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
75
u
74
+ · · · u
2
1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
12
=
u
3
u
3
+ u
a
9
=
u
3
u
5
+ u
3
+ u
a
3
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
8
=
u
11
2u
9
2u
7
u
3
u
11
3u
9
4u
7
u
5
+ u
3
+ u
a
1
=
u
19
+ 4u
17
+ 8u
15
+ 8u
13
+ 5u
11
+ 2u
9
+ 2u
7
+ u
3
u
19
+ 5u
17
+ 12u
15
+ 15u
13
+ 9u
11
u
9
4u
7
2u
5
+ u
3
+ u
a
7
=
u
27
6u
25
+ ··· 4u
7
u
3
u
27
7u
25
+ ··· + u
3
+ u
a
6
=
u
54
+ 13u
52
+ ··· u
4
+ 1
u
54
+ 14u
52
+ ··· + 2u
4
+ u
2
a
2
=
u
33
8u
31
+ ··· + 4u
5
u
u
35
+ 9u
33
+ ··· + u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
73
+ 4u
72
+ ··· + 8u
2
+ 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
75
+ 27u
74
+ ··· 2u 1
c
2
, c
6
u
75
u
74
+ ··· + 2u 1
c
3
, c
11
u
75
+ u
74
+ ··· + 224u 37
c
4
, c
10
u
75
u
74
+ ··· u
2
1
c
7
, c
8
, c
12
u
75
+ 5u
74
+ ··· 122u 13
c
9
u
75
39u
74
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
75
+ 43y
74
+ ··· 42y 1
c
2
, c
6
y
75
+ 27y
74
+ ··· 2y 1
c
3
, c
11
y
75
49y
74
+ ··· 139634y 1369
c
4
, c
10
y
75
+ 39y
74
+ ··· 2y 1
c
7
, c
8
, c
12
y
75
+ 71y
74
+ ··· + 818y 169
c
9
y
75
5y
74
+ ··· + 6y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.605676 + 0.796769I
6.04317 + 9.23163I 0. 8.30449I
u = 0.605676 0.796769I
6.04317 9.23163I 0. + 8.30449I
u = 0.434200 + 0.904835I
1.00534 6.47824I 4.00000 + 9.67055I
u = 0.434200 0.904835I
1.00534 + 6.47824I 4.00000 9.67055I
u = 0.357332 + 0.925036I
1.74821 + 1.50345I 6.59382 3.63022I
u = 0.357332 0.925036I
1.74821 1.50345I 6.59382 + 3.63022I
u = 0.596114 + 0.790314I
4.52032 3.81412I 1.55948 + 3.68783I
u = 0.596114 0.790314I
4.52032 + 3.81412I 1.55948 3.68783I
u = 0.611709 + 0.774118I
10.27490 + 2.38694I 4.63689 3.32182I
u = 0.611709 0.774118I
10.27490 2.38694I 4.63689 + 3.32182I
u = 0.611730 + 0.749244I
6.17981 4.47538I 0.99002 + 1.78684I
u = 0.611730 0.749244I
6.17981 + 4.47538I 0.99002 1.78684I
u = 0.599256 + 0.754022I
4.62446 0.87914I 1.19980 + 3.06129I
u = 0.599256 0.754022I
4.62446 + 0.87914I 1.19980 3.06129I
u = 0.026354 + 0.944514I
3.78137 + 2.60614I 11.97414 3.59156I
u = 0.026354 0.944514I
3.78137 2.60614I 11.97414 + 3.59156I
u = 0.445777 + 0.744877I
2.71406 1.90275I 3.96566 + 4.94031I
u = 0.445777 0.744877I
2.71406 + 1.90275I 3.96566 4.94031I
u = 0.297220 + 1.135960I
0.31557 6.14170I 0
u = 0.297220 1.135960I
0.31557 + 6.14170I 0
u = 0.792174 + 0.211922I
3.19444 + 10.59060I 1.16244 7.05944I
u = 0.792174 0.211922I
3.19444 10.59060I 1.16244 + 7.05944I
u = 0.326975 + 1.136760I
1.78383 + 1.05705I 0
u = 0.326975 1.136760I
1.78383 1.05705I 0
u = 0.778680 + 0.229580I
7.67564 + 3.86014I 3.36188 2.54547I
u = 0.778680 0.229580I
7.67564 3.86014I 3.36188 + 2.54547I
u = 0.783246 + 0.208394I
1.76009 5.07972I 3.22251 + 2.55358I
u = 0.783246 0.208394I
1.76009 + 5.07972I 3.22251 2.55358I
u = 0.416318 + 1.118240I
2.27451 + 1.40801I 0
u = 0.416318 1.118240I
2.27451 1.40801I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.756757 + 0.247164I
3.87573 2.95735I 0.06195 + 2.67044I
u = 0.756757 0.247164I
3.87573 + 2.95735I 0.06195 2.67044I
u = 0.312742 + 1.169010I
3.42309 + 0.45321I 0
u = 0.312742 1.169010I
3.42309 0.45321I 0
u = 0.752182 + 0.229843I
2.28210 2.23283I 2.43604 + 2.41048I
u = 0.752182 0.229843I
2.28210 + 2.23283I 2.43604 2.41048I
u = 0.331893 + 1.180670I
2.43376 1.52363I 0
u = 0.331893 1.180670I
2.43376 + 1.52363I 0
u = 0.325952 + 1.187250I
1.06510 + 7.02113I 0
u = 0.325952 1.187250I
1.06510 7.02113I 0
u = 0.214391 + 0.731240I
0.447274 + 1.029570I 6.61766 6.37411I
u = 0.214391 0.731240I
0.447274 1.029570I 6.61766 + 6.37411I
u = 0.449541 + 1.154810I
4.51193 4.07458I 0
u = 0.449541 1.154810I
4.51193 + 4.07458I 0
u = 0.482271 + 1.142580I
1.76946 + 6.42913I 0
u = 0.482271 1.142580I
1.76946 6.42913I 0
u = 0.751767 + 0.088561I
3.83758 5.79700I 6.35953 + 6.44372I
u = 0.751767 0.088561I
3.83758 + 5.79700I 6.35953 6.44372I
u = 0.744452 + 0.066574I
4.31968 + 0.36674I 7.87220 0.50275I
u = 0.744452 0.066574I
4.31968 0.36674I 7.87220 + 0.50275I
u = 0.409035 + 1.184990I
7.51694 1.78430I 0
u = 0.409035 1.184990I
7.51694 + 1.78430I 0
u = 0.419688 + 1.183890I
7.91319 3.70818I 0
u = 0.419688 1.183890I
7.91319 + 3.70818I 0
u = 0.533487 + 1.149800I
1.23150 1.88454I 0
u = 0.533487 1.149800I
1.23150 + 1.88454I 0
u = 0.527390 + 1.154690I
0.42284 + 7.03628I 0
u = 0.527390 1.154690I
0.42284 7.03628I 0
u = 0.474033 + 1.180990I
7.52996 4.83567I 0
u = 0.474033 1.180990I
7.52996 + 4.83567I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482557 + 1.181340I
6.99960 + 10.33920I 0
u = 0.482557 1.181340I
6.99960 10.33920I 0
u = 0.535680 + 1.162020I
4.93464 8.76118I 0
u = 0.535680 1.162020I
4.93464 + 8.76118I 0
u = 0.530550 + 1.169690I
1.06556 + 9.96571I 0
u = 0.530550 1.169690I
1.06556 9.96571I 0
u = 0.534111 + 1.171560I
0.3673 15.5144I 0
u = 0.534111 1.171560I
0.3673 + 15.5144I 0
u = 0.458828 + 0.536244I
0.03059 + 2.65332I 0.13467 2.90348I
u = 0.458828 0.536244I
0.03059 2.65332I 0.13467 + 2.90348I
u = 0.646867 + 0.153322I
1.02159 2.08911I 1.37094 + 4.75504I
u = 0.646867 0.153322I
1.02159 + 2.08911I 1.37094 4.75504I
u = 0.651127
1.36435 8.10100
u = 0.446014 + 0.404386I
0.26212 + 1.94827I 0.25758 3.35365I
u = 0.446014 0.404386I
0.26212 1.94827I 0.25758 + 3.35365I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
75
+ 27u
74
+ ··· 2u 1
c
2
, c
6
u
75
u
74
+ ··· + 2u 1
c
3
, c
11
u
75
+ u
74
+ ··· + 224u 37
c
4
, c
10
u
75
u
74
+ ··· u
2
1
c
7
, c
8
, c
12
u
75
+ 5u
74
+ ··· 122u 13
c
9
u
75
39u
74
+ ··· 2u + 1
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
75
+ 43y
74
+ ··· 42y 1
c
2
, c
6
y
75
+ 27y
74
+ ··· 2y 1
c
3
, c
11
y
75
49y
74
+ ··· 139634y 1369
c
4
, c
10
y
75
+ 39y
74
+ ··· 2y 1
c
7
, c
8
, c
12
y
75
+ 71y
74
+ ··· + 818y 169
c
9
y
75
5y
74
+ ··· + 6y 1
9