10
34
(K10a
19
)
A knot diagram
1
Linearized knot diagam
4 8 5 2 1 10 9 3 7 6
Solving Sequence
1,4
2 5 6 3 10 7 9 8
c
1
c
4
c
5
c
3
c
10
c
6
c
9
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
18
u
17
+ ··· 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 18 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
18
u
17
5u
16
+ 6u
15
+ 10u
14
15u
13
5u
12
+ 16u
11
11u
10
+
u
9
+ 17u
8
18u
7
2u
6
+ 12u
5
8u
4
+ 2u
3
+ 3u
2
3u + 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
10
=
u
6
u
4
+ 1
u
6
2u
4
+ u
2
a
7
=
u
9
+ 2u
7
u
5
2u
3
+ u
u
9
+ 3u
7
3u
5
+ u
a
9
=
u
12
3u
10
+ 3u
8
+ 2u
6
4u
4
+ u
2
+ 1
u
12
4u
10
+ 6u
8
2u
6
3u
4
+ 2u
2
a
8
=
u
15
+ 4u
13
6u
11
+ 8u
7
6u
5
2u
3
+ 2u
u
15
+ 5u
13
10u
11
+ 7u
9
+ 4u
7
8u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
20u
14
+ 4u
13
+ 44u
12
16u
11
36u
10
+ 28u
9
16u
8
12u
7
+ 56u
6
16u
5
24u
4
+ 24u
3
8u
2
+ 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
18
u
17
+ ··· 3u + 1
c
2
, c
8
u
18
+ u
17
+ ··· + u + 1
c
3
u
18
+ 11u
17
+ ··· + 3u + 1
c
5
, c
6
, c
7
c
9
, c
10
u
18
3u
17
+ ··· 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
11y
17
+ ··· 3y + 1
c
2
, c
8
y
18
3y
17
+ ··· 3y + 1
c
3
y
18
7y
17
+ ··· + y + 1
c
5
, c
6
, c
7
c
9
, c
10
y
18
+ 25y
17
+ ··· + 9y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.909285 + 0.387234I
0.00395 3.50386I 4.01768 + 8.20647I
u = 0.909285 0.387234I
0.00395 + 3.50386I 4.01768 8.20647I
u = 0.949796 + 0.161768I
1.67574 + 0.60080I 4.05524 0.52802I
u = 0.949796 0.161768I
1.67574 0.60080I 4.05524 + 0.52802I
u = 0.012693 + 0.930781I
12.31670 + 3.38380I 0.20360 2.27447I
u = 0.012693 0.930781I
12.31670 3.38380I 0.20360 + 2.27447I
u = 1.166330 + 0.369488I
5.99819 + 1.29789I 3.32252 0.68135I
u = 1.166330 0.369488I
5.99819 1.29789I 3.32252 + 0.68135I
u = 1.143080 + 0.442338I
5.44176 6.61296I 1.60438 + 7.00860I
u = 1.143080 0.442338I
5.44176 + 6.61296I 1.60438 7.00860I
u = 0.082055 + 0.692654I
2.41237 + 2.42038I 1.45127 3.59982I
u = 0.082055 0.692654I
2.41237 2.42038I 1.45127 + 3.59982I
u = 1.279130 + 0.484277I
16.2022 8.4223I 2.83851 + 5.16445I
u = 1.279130 0.484277I
16.2022 + 8.4223I 2.83851 5.16445I
u = 1.285130 + 0.469694I
16.3133 + 1.5857I 3.06627 0.65832I
u = 1.285130 0.469694I
16.3133 1.5857I 3.06627 + 0.65832I
u = 0.475010 + 0.326439I
1.138660 + 0.137643I 9.21435 0.51404I
u = 0.475010 0.326439I
1.138660 0.137643I 9.21435 + 0.51404I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
18
u
17
+ ··· 3u + 1
c
2
, c
8
u
18
+ u
17
+ ··· + u + 1
c
3
u
18
+ 11u
17
+ ··· + 3u + 1
c
5
, c
6
, c
7
c
9
, c
10
u
18
3u
17
+ ··· 3u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
11y
17
+ ··· 3y + 1
c
2
, c
8
y
18
3y
17
+ ··· 3y + 1
c
3
y
18
7y
17
+ ··· + y + 1
c
5
, c
6
, c
7
c
9
, c
10
y
18
+ 25y
17
+ ··· + 9y + 1
7