12a
0396
(K12a
0396
)
A knot diagram
1
Linearized knot diagam
3 6 9 11 2 12 1 4 8 5 10 7
Solving Sequence
4,8
9 10
1,3
2 7 12 6 5 11
c
8
c
9
c
3
c
1
c
7
c
12
c
6
c
5
c
11
c
2
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−8u
32
8u
31
+ ··· + 16b 30, 5u
32
+ 9u
31
+ ··· + 32a + 50, u
33
+ 7u
31
+ ··· + 6u
2
+ 2i
I
u
2
= h−2.64825 × 10
24
u
49
8.95879 × 10
24
u
48
+ ··· + 5.05220 × 10
25
b 7.19242 × 10
25
,
1.59826 × 10
25
u
49
1.45944 × 10
25
u
48
+ ··· + 5.05220 × 10
25
a + 1.62536 × 10
26
,
u
50
+ 2u
49
+ ··· + 44u + 8i
I
u
3
= h−u
3
a + a
2
u 2u
3
a
2
au + 2b 2a 2,
2u
3
a
2
2a
2
u
2
+ u
3
a + 2a
3
+ 4a
2
u 3u
2
a + u
3
+ 2a
2
3u
2
+ a + 2u 1, u
4
+ u
2
+ u + 1i
I
u
4
= hb 1, u
2
+ 2a + u, u
4
+ u
2
+ 2i
I
u
5
= ha
3
u + a
3
a
2
u + 2a
2
3au + b 3a u 3, 2a
4
3a
3
u + a
3
6a
2
+ 3au 5a + u 1, u
2
+ 1i
I
u
6
= h−u
5
a
2
+ 2u
5
a + ··· 4a + 4,
2u
5
a
2
2u
5
a + 2u
3
a
2
+ 3u
4
a 2a
2
u
2
3u
3
a + 2u
4
+ a
3
+ 2a
2
u + 2u
2
a 2a
2
4au + 2u
2
+ 4a 2u,
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
I
u
7
= hb + 1, u
3
u
2
+ 2a + u + 1, u
4
+ 1i
I
v
1
= ha, b + 1, v 1i
* 8 irreducible components of dim
C
= 0, with total 130 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8u
32
8u
31
+ · · · + 16b 30, 5u
32
+ 9u
31
+ · · · + 32a + 50, u
33
+
7u
31
+ · · · + 6u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
0.156250u
32
0.281250u
31
+ ··· + 0.187500u 1.56250
1
2
u
32
+
1
2
u
31
+ ··· +
21
8
u +
15
8
a
3
=
u
u
3
+ u
a
2
=
0.156250u
32
0.218750u
31
+ ··· + 1.43750u 0.562500
0.687500u
32
+ 0.687500u
31
+ ··· + 3.25000u + 2.75000
a
7
=
0.281250u
32
+ 0.281250u
31
+ ··· + 0.812500u + 1.56250
3
16
u
32
9
16
u
31
+ ··· +
9
8
u
11
8
a
12
=
u
4
u
2
1
1
8
u
31
3
4
u
29
+ ···
5
2
u
2
1
4
a
6
=
0.156250u
32
+ 0.218750u
31
+ ··· 1.43750u + 0.562500
1
4
u
32
+
3
16
u
31
+ ··· +
25
8
u +
5
4
a
5
=
u
1
8
u
32
3
4
u
30
+ ···
5
2
u
3
+
3
4
u
a
11
=
1
1
8
u
31
3
4
u
29
+ ···
5
2
u
2
1
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
23
8
u
32
+
11
8
u
31
+ ···
29
4
u +
17
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
33
+ 12u
32
+ ··· + 521u + 121
c
2
, c
5
u
33
+ 6u
32
+ ··· + 31u + 11
c
3
, c
4
, c
8
c
10
u
33
+ 7u
31
+ ··· + 6u
2
+ 2
c
6
, c
7
, c
12
u
33
6u
32
+ ··· + 43u + 11
c
9
, c
11
u
33
14u
32
+ ··· 24u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
33
+ 24y
32
+ ··· 121083y 14641
c
2
, c
5
y
33
12y
32
+ ··· + 521y 121
c
3
, c
4
, c
8
c
10
y
33
+ 14y
32
+ ··· 24y 4
c
6
, c
7
, c
12
y
33
36y
32
+ ··· + 441y 121
c
9
, c
11
y
33
+ 18y
32
+ ··· + 1024y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.915077 + 0.392052I
a = 0.964198 0.704112I
b = 1.39433 0.29710I
1.39980 6.40207I 2.78525 + 3.47464I
u = 0.915077 0.392052I
a = 0.964198 + 0.704112I
b = 1.39433 + 0.29710I
1.39980 + 6.40207I 2.78525 3.47464I
u = 0.521343 + 0.878780I
a = 0.278469 + 1.164920I
b = 1.006190 + 0.409437I
1.86625 5.18521I 2.35796 + 8.34892I
u = 0.521343 0.878780I
a = 0.278469 1.164920I
b = 1.006190 0.409437I
1.86625 + 5.18521I 2.35796 8.34892I
u = 0.717553 + 0.749593I
a = 0.129136 1.144270I
b = 0.033872 0.657961I
4.49859 4.89069I 7.87872 + 6.56643I
u = 0.717553 0.749593I
a = 0.129136 + 1.144270I
b = 0.033872 + 0.657961I
4.49859 + 4.89069I 7.87872 6.56643I
u = 0.347167 + 1.041210I
a = 0.857157 0.206509I
b = 1.59638 + 0.20692I
10.63600 + 1.24046I 4.58607 + 3.80858I
u = 0.347167 1.041210I
a = 0.857157 + 0.206509I
b = 1.59638 0.20692I
10.63600 1.24046I 4.58607 3.80858I
u = 0.762745 + 0.444328I
a = 0.56231 1.38622I
b = 0.196556 0.752591I
3.68416 + 2.61049I 7.80738 1.77247I
u = 0.762745 0.444328I
a = 0.56231 + 1.38622I
b = 0.196556 + 0.752591I
3.68416 2.61049I 7.80738 + 1.77247I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.823813 + 0.245550I
a = 0.805044 + 0.420154I
b = 1.365110 + 0.173472I
3.45677 + 1.23306I 0.418871 + 0.738062I
u = 0.823813 0.245550I
a = 0.805044 0.420154I
b = 1.365110 0.173472I
3.45677 1.23306I 0.418871 0.738062I
u = 0.473645 + 1.050870I
a = 0.268275 + 0.246204I
b = 0.657658 + 0.770559I
3.04967 + 2.32264I 1.80922 1.99961I
u = 0.473645 1.050870I
a = 0.268275 0.246204I
b = 0.657658 0.770559I
3.04967 2.32264I 1.80922 + 1.99961I
u = 0.396598 + 1.108560I
a = 0.883813 + 0.566525I
b = 1.61157 0.05524I
11.59150 + 5.51497I 5.96018 7.21704I
u = 0.396598 1.108560I
a = 0.883813 0.566525I
b = 1.61157 + 0.05524I
11.59150 5.51497I 5.96018 + 7.21704I
u = 0.835942 + 0.860558I
a = 0.692058 1.146520I
b = 1.296420 0.210819I
0.38293 + 7.96970I 0.94048 8.93222I
u = 0.835942 0.860558I
a = 0.692058 + 1.146520I
b = 1.296420 + 0.210819I
0.38293 7.96970I 0.94048 + 8.93222I
u = 0.649902 + 1.037910I
a = 0.858076 0.606711I
b = 0.185341 0.364626I
2.69171 + 5.74108I 6.75405 5.32867I
u = 0.649902 1.037910I
a = 0.858076 + 0.606711I
b = 0.185341 + 0.364626I
2.69171 5.74108I 6.75405 + 5.32867I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.040993 + 0.770747I
a = 1.47224 + 0.23255I
b = 1.59948 + 0.10021I
9.08975 3.34368I 2.92320 + 4.06886I
u = 0.040993 0.770747I
a = 1.47224 0.23255I
b = 1.59948 0.10021I
9.08975 + 3.34368I 2.92320 4.06886I
u = 0.771934 + 1.013930I
a = 0.632971 + 0.675979I
b = 1.245670 0.061329I
0.57566 4.29905I 2.61702 + 1.07304I
u = 0.771934 1.013930I
a = 0.632971 0.675979I
b = 1.245670 + 0.061329I
0.57566 + 4.29905I 2.61702 1.07304I
u = 0.591756 + 1.172490I
a = 0.718848 1.111970I
b = 0.333529 0.923419I
0.84237 + 13.11040I 0.78548 9.94308I
u = 0.591756 1.172490I
a = 0.718848 + 1.111970I
b = 0.333529 + 0.923419I
0.84237 13.11040I 0.78548 + 9.94308I
u = 0.564519 + 1.207290I
a = 0.64338 + 1.66167I
b = 1.51399 + 0.28516I
9.1548 + 11.5989I 4.91327 6.70032I
u = 0.564519 1.207290I
a = 0.64338 1.66167I
b = 1.51399 0.28516I
9.1548 11.5989I 4.91327 + 6.70032I
u = 0.609861 + 1.220400I
a = 0.47129 1.90074I
b = 1.47614 0.36873I
6.6338 17.7809I 2.21241 + 10.23989I
u = 0.609861 1.220400I
a = 0.47129 + 1.90074I
b = 1.47614 + 0.36873I
6.6338 + 17.7809I 2.21241 10.23989I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.028409 + 0.547371I
a = 0.373780 + 0.278891I
b = 0.692239 + 0.437691I
1.18727 + 1.45039I 0.42798 3.86280I
u = 0.028409 0.547371I
a = 0.373780 0.278891I
b = 0.692239 0.437691I
1.18727 1.45039I 0.42798 + 3.86280I
u = 0.392754
a = 1.68195
b = 0.325593
1.04636 11.1810
8
II. I
u
2
= h−2.65 × 10
24
u
49
8.96 × 10
24
u
48
+ · · · + 5.05 × 10
25
b 7.19 ×
10
25
, 1.60 × 10
25
u
49
1.46 × 10
25
u
48
+ · · · + 5.05 × 10
25
a + 1.63 ×
10
26
, u
50
+ 2u
49
+ · · · + 44u + 8i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
0.316348u
49
+ 0.288873u
48
+ ··· 5.69866u 3.21712
0.0524177u
49
+ 0.177324u
48
+ ··· + 6.15670u + 1.42362
a
3
=
u
u
3
+ u
a
2
=
0.331848u
49
+ 0.381211u
48
+ ··· + 2.15589u 1.40233
0.0642354u
49
+ 0.233571u
48
+ ··· + 11.1884u + 2.74771
a
7
=
0.396469u
49
+ 0.617854u
48
+ ··· + 9.00772u + 1.32807
0.270674u
49
+ 0.480833u
48
+ ··· + 15.1832u + 3.08494
a
12
=
0.355248u
49
+ 0.291595u
48
+ ··· 0.394990u 1.10912
0.0482855u
49
+ 0.111160u
48
+ ··· + 5.80109u + 2.01284
a
6
=
0.421552u
49
+ 0.618093u
48
+ ··· + 0.335698u 2.40068
0.261028u
49
+ 0.573430u
48
+ ··· + 19.0608u + 4.00464
a
5
=
0.181884u
49
+ 0.334958u
48
+ ··· 4.80912u 2.81382
0.306884u
49
+ 0.584958u
48
+ ··· + 16.4409u + 2.68618
a
11
=
0.335773u
49
+ 0.364661u
48
+ ··· + 4.62064u 0.666888
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1898522637621677506109549
3157627707198910369381082
u
49
4020305257773637481583771
6315255414397820738762164
u
48
+
···
11335271725021575919299381
1578813853599455184690541
u +
1203508006065254918095845
1578813853599455184690541
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
25
+ 10u
24
+ ··· + 97u + 9)
2
c
2
, c
5
(u
25
2u
24
+ ··· u + 3)
2
c
3
, c
4
, c
8
c
10
u
50
+ 2u
49
+ ··· + 44u + 8
c
6
, c
7
, c
12
(u
25
+ 2u
24
+ ··· 5u + 3)
2
c
9
, c
11
u
50
28u
49
+ ··· 784u + 64
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
25
+ 14y
24
+ ··· + 1561y 81)
2
c
2
, c
5
(y
25
10y
24
+ ··· + 97y 9)
2
c
3
, c
4
, c
8
c
10
y
50
+ 28y
49
+ ··· + 784y + 64
c
6
, c
7
, c
12
(y
25
26y
24
+ ··· 47y 9)
2
c
9
, c
11
y
50
12y
49
+ ··· + 68864y + 4096
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.966918 + 0.270016I
a = 0.751464 0.895075I
b = 1.44066 0.34360I
3.73131 + 12.07650I 0.57661 7.22441I
u = 0.966918 0.270016I
a = 0.751464 + 0.895075I
b = 1.44066 + 0.34360I
3.73131 12.07650I 0.57661 + 7.22441I
u = 0.775444 + 0.545505I
a = 0.414542 0.876936I
b = 0.066602 0.499012I
4.14430 0.37131I 8.72924 0.01538I
u = 0.775444 0.545505I
a = 0.414542 + 0.876936I
b = 0.066602 + 0.499012I
4.14430 + 0.37131I 8.72924 + 0.01538I
u = 0.201989 + 1.059430I
a = 0.09976 + 1.59657I
b = 0.708151
4.19892 8.09367 + 0.I
u = 0.201989 1.059430I
a = 0.09976 1.59657I
b = 0.708151
4.19892 8.09367 + 0.I
u = 0.869538 + 0.298974I
a = 0.334522 1.368370I
b = 0.281632 0.858743I
1.77513 7.73599I 4.26723 + 6.67404I
u = 0.869538 0.298974I
a = 0.334522 + 1.368370I
b = 0.281632 + 0.858743I
1.77513 + 7.73599I 4.26723 6.67404I
u = 0.895045 + 0.202572I
a = 0.593420 + 0.550719I
b = 1.45092 + 0.25712I
6.14042 6.29490I 2.20266 + 3.49250I
u = 0.895045 0.202572I
a = 0.593420 0.550719I
b = 1.45092 0.25712I
6.14042 + 6.29490I 2.20266 3.49250I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.665448 + 0.869585I
a = 0.918930 0.862702I
b = 0.066602 0.499012I
4.14430 0.37131I 8.72924 + 0.I
u = 0.665448 0.869585I
a = 0.918930 + 0.862702I
b = 0.066602 + 0.499012I
4.14430 + 0.37131I 8.72924 + 0.I
u = 0.437535 + 1.037370I
a = 0.79029 1.70199I
b = 0.360930 0.736826I
3.32486 + 4.24383I 0.60496 6.78537I
u = 0.437535 1.037370I
a = 0.79029 + 1.70199I
b = 0.360930 + 0.736826I
3.32486 4.24383I 0.60496 + 6.78537I
u = 0.898759 + 0.681190I
a = 0.898999 0.731480I
b = 1.273790 0.131362I
0.43185 1.83282I 0. + 4.01286I
u = 0.898759 0.681190I
a = 0.898999 + 0.731480I
b = 1.273790 + 0.131362I
0.43185 + 1.83282I 0. 4.01286I
u = 0.024231 + 1.181170I
a = 0.523985 + 0.397590I
b = 0.276341 + 0.419444I
1.76402 + 1.04428I 5.27127 1.42914I
u = 0.024231 1.181170I
a = 0.523985 0.397590I
b = 0.276341 0.419444I
1.76402 1.04428I 5.27127 + 1.42914I
u = 0.836400 + 0.845826I
a = 0.914347 + 0.357065I
b = 1.273790 0.131362I
0.43185 1.83282I 0. + 4.01286I
u = 0.836400 0.845826I
a = 0.914347 0.357065I
b = 1.273790 + 0.131362I
0.43185 + 1.83282I 0. 4.01286I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.550448 + 1.066430I
a = 0.12223 2.40447I
b = 1.45602 0.27617I
9.17748 7.92352I 3.71863 + 6.25521I
u = 0.550448 1.066430I
a = 0.12223 + 2.40447I
b = 1.45602 + 0.27617I
9.17748 + 7.92352I 3.71863 6.25521I
u = 0.209739 + 0.755305I
a = 0.064242 + 0.285254I
b = 0.684260 + 0.499844I
1.19934 + 1.42730I 0.30682 4.01748I
u = 0.209739 0.755305I
a = 0.064242 0.285254I
b = 0.684260 0.499844I
1.19934 1.42730I 0.30682 + 4.01748I
u = 0.486500 + 1.134090I
a = 0.31834 + 2.07821I
b = 1.46767 + 0.15865I
10.93610 + 2.15851I 6.42476 + 0.I
u = 0.486500 1.134090I
a = 0.31834 2.07821I
b = 1.46767 0.15865I
10.93610 2.15851I 6.42476 + 0.I
u = 0.592659 + 1.085410I
a = 0.592610 1.250100I
b = 0.281632 0.858743I
1.77513 7.73599I 0. + 6.67404I
u = 0.592659 1.085410I
a = 0.592610 + 1.250100I
b = 0.281632 + 0.858743I
1.77513 + 7.73599I 0. 6.67404I
u = 0.598799 + 0.472548I
a = 2.08191 0.65289I
b = 1.43420 0.17935I
7.40691 + 3.30443I 2.15585 1.80924I
u = 0.598799 0.472548I
a = 2.08191 + 0.65289I
b = 1.43420 + 0.17935I
7.40691 3.30443I 2.15585 + 1.80924I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.230191 + 1.233540I
a = 0.816301 + 0.437714I
b = 1.46552 0.03322I
8.27446 2.21818I 0
u = 0.230191 1.233540I
a = 0.816301 0.437714I
b = 1.46552 + 0.03322I
8.27446 + 2.21818I 0
u = 0.241098 + 1.258930I
a = 0.356897 + 0.269220I
b = 0.360930 + 0.736826I
3.32486 4.24383I 0
u = 0.241098 1.258930I
a = 0.356897 0.269220I
b = 0.360930 0.736826I
3.32486 + 4.24383I 0
u = 0.221133 + 0.682614I
a = 2.02855 1.71297I
b = 0.276341 0.419444I
1.76402 1.04428I 5.27127 + 1.42914I
u = 0.221133 0.682614I
a = 2.02855 + 1.71297I
b = 0.276341 + 0.419444I
1.76402 + 1.04428I 5.27127 1.42914I
u = 0.555645 + 1.156390I
a = 0.45124 + 1.69756I
b = 1.45092 + 0.25712I
6.14042 6.29490I 0
u = 0.555645 1.156390I
a = 0.45124 1.69756I
b = 1.45092 0.25712I
6.14042 + 6.29490I 0
u = 0.100716 + 1.304410I
a = 0.719569 + 0.115161I
b = 1.43420 + 0.17935I
7.40691 3.30443I 0
u = 0.100716 1.304410I
a = 0.719569 0.115161I
b = 1.43420 0.17935I
7.40691 + 3.30443I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.635007 + 1.157080I
a = 0.20430 1.91387I
b = 1.44066 0.34360I
3.73131 + 12.07650I 0
u = 0.635007 1.157080I
a = 0.20430 + 1.91387I
b = 1.44066 + 0.34360I
3.73131 12.07650I 0
u = 0.634382 + 0.206664I
a = 1.45945 + 0.94937I
b = 1.46552 + 0.03322I
8.27446 + 2.21818I 3.23817 3.39990I
u = 0.634382 0.206664I
a = 1.45945 0.94937I
b = 1.46552 0.03322I
8.27446 2.21818I 3.23817 + 3.39990I
u = 0.323168 + 1.297610I
a = 0.805615 + 0.515870I
b = 1.46767 0.15865I
10.93610 2.15851I 0
u = 0.323168 1.297610I
a = 0.805615 0.515870I
b = 1.46767 + 0.15865I
10.93610 + 2.15851I 0
u = 0.264445 + 1.349020I
a = 0.653958 0.006935I
b = 1.45602 + 0.27617I
9.17748 + 7.92352I 0
u = 0.264445 1.349020I
a = 0.653958 + 0.006935I
b = 1.45602 0.27617I
9.17748 7.92352I 0
u = 0.254843 + 0.414573I
a = 0.821673 + 0.925690I
b = 0.684260 + 0.499844I
1.19934 + 1.42730I 0.30682 4.01748I
u = 0.254843 0.414573I
a = 0.821673 0.925690I
b = 0.684260 0.499844I
1.19934 1.42730I 0.30682 + 4.01748I
16
III. I
u
3
=
h−u
3
a+ a
2
u2u
3
a
2
au +2b2a2, 2u
3
a
2
+u
3
a+ · · ·+a1, u
4
+u
2
+u +1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
a
1
2
u
3
a + u
3
+ ··· + a + 1
a
3
=
u
u
3
+ u
a
2
=
1
2
u
3
a
2
+ u
3
+ ···
1
2
au + u
1
2
a
2
u
2
+ 2u
3
+ ··· +
1
2
a + 1
a
7
=
1
2
u
3
a
2
u
3
+ ··· +
1
2
a + 1
1
2
a
2
u
2
+ u
3
a + ··· +
1
2
a + 1
a
12
=
u
u
3
+ u
a
6
=
1
2
u
3
a
2
u
3
+ ··· +
1
2
au u
1
2
u
3
a
2
+
3
2
u
3
a + ··· +
1
2
a
2
+ 1
a
5
=
u
u
3
u
2
u 1
a
11
=
1
u
3
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 8u
11
+ ··· 7u + 4
c
2
, c
5
, c
6
c
7
, c
12
u
12
4u
10
3u
9
+ 6u
8
+ 9u
7
9u
5
7u
4
+ 4u
2
+ 3u + 2
c
3
, c
4
, c
8
c
10
(u
4
+ u
2
+ u + 1)
3
c
9
, c
11
(u
4
2u
3
+ 3u
2
u + 1)
3
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
8y
11
+ ··· 145y + 16
c
2
, c
5
, c
6
c
7
, c
12
y
12
8y
11
+ ··· + 7y + 4
c
3
, c
4
, c
8
c
10
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
c
9
, c
11
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
3
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.379406 + 0.894323I
b = 0.065726 + 0.647819I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 + 0.585652I
a = 0.020994 0.913447I
b = 1.178420 0.296033I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 + 0.585652I
a = 0.01071 2.11902I
b = 1.112690 0.351786I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 0.585652I
a = 0.379406 0.894323I
b = 0.065726 0.647819I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 0.585652I
a = 0.020994 + 0.913447I
b = 1.178420 + 0.296033I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 0.585652I
a = 0.01071 + 2.11902I
b = 1.112690 + 0.351786I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 + 1.120870I
a = 0.622043 + 1.018910I
b = 0.501564 + 0.805554I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 + 1.120870I
a = 0.424743 0.096257I
b = 0.917667 0.662119I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 + 1.120870I
a = 1.34960 1.53668I
b = 1.41923 0.14344I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 1.120870I
a = 0.622043 1.018910I
b = 0.501564 0.805554I
2.62503 + 7.64338I 1.77019 6.51087I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.547424 1.120870I
a = 0.424743 + 0.096257I
b = 0.917667 + 0.662119I
2.62503 + 7.64338I 1.77019 6.51087I
u = 0.547424 1.120870I
a = 1.34960 + 1.53668I
b = 1.41923 + 0.14344I
2.62503 + 7.64338I 1.77019 6.51087I
21
IV. I
u
4
= hb 1, u
2
+ 2a + u, u
4
+ u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
1
2
u
2
1
2
u
1
a
3
=
u
u
3
+ u
a
2
=
1
2
u
2
+
1
2
u
u
3
+ u + 1
a
7
=
1
2
u
2
1
2
u + 1
1
a
12
=
1
0
a
6
=
1
2
u
2
1
2
u
1
a
5
=
u
u
3
u
a
11
=
1
u
2
+ 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
(u 1)
4
c
2
, c
12
(u + 1)
4
c
3
, c
4
, c
8
c
10
u
4
+ u
2
+ 2
c
9
, c
11
(u
2
u + 2)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
(y 1)
4
c
3
, c
4
, c
8
c
10
(y
2
+ y + 2)
2
c
9
, c
11
(y
2
+ 3y + 4)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.676097 + 0.978318I
a = 0.088048 1.150600I
b = 1.00000
0.82247 5.33349I 2.00000 + 5.29150I
u = 0.676097 0.978318I
a = 0.088048 + 1.150600I
b = 1.00000
0.82247 + 5.33349I 2.00000 5.29150I
u = 0.676097 + 0.978318I
a = 0.588048 + 0.172279I
b = 1.00000
0.82247 + 5.33349I 2.00000 5.29150I
u = 0.676097 0.978318I
a = 0.588048 0.172279I
b = 1.00000
0.82247 5.33349I 2.00000 + 5.29150I
25
V. I
u
5
= ha
3
u + a
3
a
2
u + 2a
2
3au + b 3a u 3, 2a
4
3a
3
u + a
3
6a
2
+ 3au 5a + u 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
1
a
10
=
0
1
a
1
=
a
a
3
u a
3
+ a
2
u 2a
2
+ 3au + 3a + u + 3
a
3
=
u
0
a
2
=
a
3
u a
3
+ a
2
u 2a
2
+ 3au + 4a + u + 3
a
3
u a
3
+ a
2
u 2a
2
+ 3au + 3a + u + 3
a
7
=
a
3a
3
u a
3
+ a
2
u 4a
2
+ 8au + 5a + 3u + 5
a
12
=
1
4a
3
u + 6a
2
12au 2a 5u 4
a
6
=
a
3
u + a
3
a
2
u + 2a
2
3au 4a u 3
2a
3
u 2a
3
+ 3a
2
u + 3a
2
7au + 4a 4u
a
5
=
u
4a
3
+ 6a
2
u 2au + 12a 4u + 5
a
11
=
1
4a
3
u + 6a
2
12au 2a 5u 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
u + 4a
3
4a
2
u 8a
2
+ 16au 4a + 4u + 8
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
u
3
+ 3u
2
2u + 1)
2
c
2
, c
5
u
8
u
6
+ 3u
4
2u
2
+ 1
c
3
, c
4
, c
8
c
10
(u
2
+ 1)
4
c
6
, c
7
, c
12
u
8
5u
6
+ 7u
4
2u
2
+ 1
c
9
, c
11
(u 1)
8
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
5
(y
4
y
3
+ 3y
2
2y + 1)
2
c
3
, c
4
, c
8
c
10
(y + 1)
8
c
6
, c
7
, c
12
(y
4
5y
3
+ 7y
2
2y + 1)
2
c
9
, c
11
(y 1)
8
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.620943 + 0.162823I
b = 0.506844 + 0.395123I
3.07886 + 1.41510I 4.17326 4.90874I
u = 1.000000I
a = 1.23497 + 0.98948I
b = 0.506844 + 0.395123I
3.07886 1.41510I 4.17326 + 4.90874I
u = 1.000000I
a = 0.391114 + 0.016070I
b = 1.55249 + 0.10488I
10.08060 + 3.16396I 7.82674 2.56480I
u = 1.000000I
a = 1.74703 + 0.33163I
b = 1.55249 + 0.10488I
10.08060 3.16396I 7.82674 + 2.56480I
u = 1.000000I
a = 0.620943 0.162823I
b = 0.506844 0.395123I
3.07886 1.41510I 4.17326 + 4.90874I
u = 1.000000I
a = 1.23497 0.98948I
b = 0.506844 0.395123I
3.07886 + 1.41510I 4.17326 4.90874I
u = 1.000000I
a = 0.391114 0.016070I
b = 1.55249 0.10488I
10.08060 3.16396I 7.82674 + 2.56480I
u = 1.000000I
a = 1.74703 0.33163I
b = 1.55249 0.10488I
10.08060 + 3.16396I 7.82674 2.56480I
29
VI. I
u
6
= h−u
5
a
2
+ 2u
5
a + · · · 4a + 4, 2u
5
a
2
2u
5
a + · · · 2a
2
+ 4a, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
a
1
2
u
5
a
2
u
5
a + ··· + 2a 2
a
3
=
u
u
3
+ u
a
2
=
1
2
u
5
a
2
+
1
2
u
4
a + ··· +
1
2
a + u
3
2
u
5
a
2
1
2
u
5
a + ··· + a 2
a
7
=
u
5
a
2
u
5
a + ··· + a 1
1
2
u
4
a
2
+
1
2
u
5
a + ··· a + 1
a
12
=
u
u
3
+ u
a
6
=
u
5
a
2
3
2
u
5
a + ··· + 2a 2
0.500000a
2
u
5
+ 0.500000au
5
+ ··· + 1.50000au + 0.500000a
2
a
5
=
u
4
+ u
2
+ 1
u
5
+ 2u
3
u
2
+ 2u 1
a
11
=
u
5
2u
3
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u + 2
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 6u
8
+ 15u
7
+ 21u
6
+ 19u
5
+ 12u
4
+ 7u
3
+ 5u
2
+ 2u + 1)
2
c
2
, c
5
, c
6
c
7
, c
12
(u
9
3u
7
+ u
6
+ 3u
5
2u
4
u
3
+ u
2
1)
2
c
3
, c
4
, c
8
c
10
(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
3
c
9
, c
11
(u
6
3u
5
+ 4u
4
2u
3
+ 1)
3
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
6y
8
+ 11y
7
y
6
+ 11y
5
40y
4
37y
3
21y
2
6y 1)
2
c
2
, c
5
, c
6
c
7
, c
12
(y
9
6y
8
+ 15y
7
21y
6
+ 19y
5
12y
4
+ 7y
3
5y
2
+ 2y 1)
2
c
3
, c
4
, c
8
c
10
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
c
9
, c
11
(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
3
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.506833 + 1.063700I
b = 0.376870 + 0.700062I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 + 1.001300I
a = 0.569605 0.236342I
b = 0.947946 0.524157I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 + 1.001300I
a = 1.26195 1.95192I
b = 1.324820 0.175904I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 1.001300I
a = 0.506833 1.063700I
b = 0.376870 0.700062I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 1.001300I
a = 0.569605 + 0.236342I
b = 0.947946 + 0.524157I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 1.001300I
a = 1.26195 + 1.95192I
b = 1.324820 + 0.175904I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.284920 + 1.115140I
a = 0.685507 + 0.356513I
b = 0.631920 0.444935I
4.40332 5.01951 + 0.I
u = 0.284920 + 1.115140I
a = 0.62905 + 1.51049I
b = 0.631920 + 0.444935I
4.40332 5.01951 + 0.I
u = 0.284920 + 1.115140I
a = 2.59298 1.86700I
b = 1.26384
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 0.685507 0.356513I
b = 0.631920 + 0.444935I
4.40332 5.01951 + 0.I
33
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.284920 1.115140I
a = 0.62905 1.51049I
b = 0.631920 0.444935I
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 2.59298 + 1.86700I
b = 1.26384
4.40332 5.01951 + 0.I
u = 0.713912 + 0.305839I
a = 0.448377 + 0.921693I
b = 0.376870 + 0.700062I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 + 0.305839I
a = 0.514842 0.510765I
b = 1.324820 0.175904I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 + 0.305839I
a = 0.36150 1.53549I
b = 0.947946 0.524157I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 0.305839I
a = 0.448377 0.921693I
b = 0.376870 0.700062I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 0.305839I
a = 0.514842 + 0.510765I
b = 1.324820 + 0.175904I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 0.305839I
a = 0.36150 + 1.53549I
b = 0.947946 + 0.524157I
0.26574 2.82812I 1.50976 + 2.97945I
34
VII. I
u
7
= hb + 1, u
3
u
2
+ 2a + u + 1, u
4
+ 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
1
2
u
3
+
1
2
u
2
1
2
u
1
2
1
a
3
=
u
u
3
+ u
a
2
=
1
2
u
3
+
1
2
u
2
+
1
2
u
1
2
u
3
+ u 1
a
7
=
1
2
u
3
1
2
u
2
+
1
2
u +
3
2
1
a
12
=
1
0
a
6
=
1
2
u
3
1
2
u
2
+
1
2
u +
1
2
1
a
5
=
u
u
3
+ u
a
11
=
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
4
c
3
, c
4
, c
8
c
10
u
4
+ 1
c
5
, c
6
, c
7
(u + 1)
4
c
9
, c
11
(u
2
+ 1)
2
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
(y 1)
4
c
3
, c
4
, c
8
c
10
(y
2
+ 1)
2
c
9
, c
11
(y + 1)
4
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 0.500000 0.207107I
b = 1.00000
1.64493 4.00000
u = 0.707107 0.707107I
a = 0.500000 + 0.207107I
b = 1.00000
1.64493 4.00000
u = 0.707107 + 0.707107I
a = 0.500000 1.207110I
b = 1.00000
1.64493 4.00000
u = 0.707107 0.707107I
a = 0.500000 + 1.207110I
b = 1.00000
1.64493 4.00000
38
VIII. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
1
0
a
9
=
1
0
a
10
=
1
0
a
1
=
0
1
a
3
=
1
0
a
2
=
1
1
a
7
=
1
1
a
12
=
1
0
a
6
=
0
1
a
5
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
u
c
5
, c
6
, c
7
u + 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
12
y 1
c
3
, c
4
, c
8
c
9
, c
10
, c
11
y
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
42
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
9
(u
4
u
3
+ 3u
2
2u + 1)
2
· (u
9
+ 6u
8
+ 15u
7
+ 21u
6
+ 19u
5
+ 12u
4
+ 7u
3
+ 5u
2
+ 2u + 1)
2
· (u
12
+ 8u
11
+ ··· 7u + 4)(u
25
+ 10u
24
+ ··· + 97u + 9)
2
· (u
33
+ 12u
32
+ ··· + 521u + 121)
c
2
(u 1)
5
(u + 1)
4
(u
8
u
6
+ 3u
4
2u
2
+ 1)
· (u
9
3u
7
+ u
6
+ 3u
5
2u
4
u
3
+ u
2
1)
2
· (u
12
4u
10
3u
9
+ 6u
8
+ 9u
7
9u
5
7u
4
+ 4u
2
+ 3u + 2)
· ((u
25
2u
24
+ ··· u + 3)
2
)(u
33
+ 6u
32
+ ··· + 31u + 11)
c
3
, c
4
, c
8
c
10
u(u
2
+ 1)
4
(u
4
+ 1)(u
4
+ u
2
+ 2)(u
4
+ u
2
+ u + 1)
3
· ((u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
3
)(u
33
+ 7u
31
+ ··· + 6u
2
+ 2)
· (u
50
+ 2u
49
+ ··· + 44u + 8)
c
5
(u 1)
4
(u + 1)
5
(u
8
u
6
+ 3u
4
2u
2
+ 1)
· (u
9
3u
7
+ u
6
+ 3u
5
2u
4
u
3
+ u
2
1)
2
· (u
12
4u
10
3u
9
+ 6u
8
+ 9u
7
9u
5
7u
4
+ 4u
2
+ 3u + 2)
· ((u
25
2u
24
+ ··· u + 3)
2
)(u
33
+ 6u
32
+ ··· + 31u + 11)
c
6
, c
7
(u 1)
4
(u + 1)
5
(u
8
5u
6
+ 7u
4
2u
2
+ 1)
· (u
9
3u
7
+ u
6
+ 3u
5
2u
4
u
3
+ u
2
1)
2
· (u
12
4u
10
3u
9
+ 6u
8
+ 9u
7
9u
5
7u
4
+ 4u
2
+ 3u + 2)
· ((u
25
+ 2u
24
+ ··· 5u + 3)
2
)(u
33
6u
32
+ ··· + 43u + 11)
c
9
, c
11
u(u 1)
8
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
4
2u
3
+ 3u
2
u + 1)
3
· ((u
6
3u
5
+ 4u
4
2u
3
+ 1)
3
)(u
33
14u
32
+ ··· 24u + 4)
· (u
50
28u
49
+ ··· 784u + 64)
c
12
(u 1)
5
(u + 1)
4
(u
8
5u
6
+ 7u
4
2u
2
+ 1)
· (u
9
3u
7
+ u
6
+ 3u
5
2u
4
u
3
+ u
2
1)
2
· (u
12
4u
10
3u
9
+ 6u
8
+ 9u
7
9u
5
7u
4
+ 4u
2
+ 3u + 2)
· ((u
25
+ 2u
24
+ ··· 5u + 3)
2
)(u
33
6u
32
+ ··· + 43u + 11)
43
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
9
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
9
6y
8
+ 11y
7
y
6
+ 11y
5
40y
4
37y
3
21y
2
6y 1)
2
· (y
12
8y
11
+ ··· 145y + 16)(y
25
+ 14y
24
+ ··· + 1561y 81)
2
· (y
33
+ 24y
32
+ ··· 121083y 14641)
c
2
, c
5
(y 1)
9
(y
4
y
3
+ 3y
2
2y + 1)
2
· (y
9
6y
8
+ 15y
7
21y
6
+ 19y
5
12y
4
+ 7y
3
5y
2
+ 2y 1)
2
· (y
12
8y
11
+ ··· + 7y + 4)(y
25
10y
24
+ ··· + 97y 9)
2
· (y
33
12y
32
+ ··· + 521y 121)
c
3
, c
4
, c
8
c
10
y(y + 1)
8
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
· ((y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
)(y
33
+ 14y
32
+ ··· 24y 4)
· (y
50
+ 28y
49
+ ··· + 784y + 64)
c
6
, c
7
, c
12
(y 1)
9
(y
4
5y
3
+ 7y
2
2y + 1)
2
· (y
9
6y
8
+ 15y
7
21y
6
+ 19y
5
12y
4
+ 7y
3
5y
2
+ 2y 1)
2
· (y
12
8y
11
+ ··· + 7y + 4)(y
25
26y
24
+ ··· 47y 9)
2
· (y
33
36y
32
+ ··· + 441y 121)
c
9
, c
11
y(y 1)
8
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
3
· ((y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
3
)(y
33
+ 18y
32
+ ··· + 1024y 16)
· (y
50
12y
49
+ ··· + 68864y + 4096)
44