10
35
(K10a
23
)
A knot diagram
1
Linearized knot diagam
6 10 2 8 7 1 5 4 3 9
Solving Sequence
1,7
6 2 5 8 4 9 3 10
c
6
c
1
c
5
c
7
c
4
c
8
c
3
c
10
c
2
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
24
+ u
23
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 24 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
24
+ u
23
+ · · · + 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
2
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
a
8
=
u
4
+ u
2
+ 1
u
4
a
4
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
u
2
a
9
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
8
2u
4
a
3
=
u
10
+ u
8
+ 4u
6
+ 3u
4
+ 3u
2
+ 1
u
12
2u
10
4u
8
6u
6
3u
4
2u
2
a
10
=
u
17
+ 2u
15
+ 7u
13
+ 10u
11
+ 15u
9
+ 14u
7
+ 10u
5
+ 4u
3
+ u
u
17
u
15
5u
13
4u
11
7u
9
4u
7
2u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
23
8u
21
+ 4u
20
36u
19
+ 8u
18
56u
17
+ 32u
16
116u
15
+ 44u
14
136u
13
+
80u
12
160u
11
+ 68u
10
132u
9
+ 64u
8
84u
7
+ 20u
6
48u
5
+ 4u
4
8u
3
12u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
24
+ u
23
+ ··· + 2u + 1
c
2
, c
9
u
24
+ u
23
+ ··· 2u + 1
c
3
, c
10
u
24
+ 9u
23
+ ··· + 4u + 1
c
4
, c
5
, c
7
c
8
u
24
5u
23
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
24
+ 5y
23
+ ··· + 4y + 1
c
2
, c
9
y
24
+ 9y
23
+ ··· + 4y + 1
c
3
, c
10
y
24
+ 13y
23
+ ··· + 44y + 1
c
4
, c
5
, c
7
c
8
y
24
+ 29y
23
+ ··· + 20y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.438618 + 0.887955I
1.66329 + 2.08350I 4.24893 3.59251I
u = 0.438618 0.887955I
1.66329 2.08350I 4.24893 + 3.59251I
u = 0.500467 + 0.918869I
0.78944 7.34378I 2.03585 + 8.70536I
u = 0.500467 0.918869I
0.78944 + 7.34378I 2.03585 8.70536I
u = 0.598969 + 0.738905I
3.49325 2.24409I 5.16388 + 4.25877I
u = 0.598969 0.738905I
3.49325 + 2.24409I 5.16388 4.25877I
u = 0.039909 + 0.910777I
3.76737 + 2.61939I 8.11481 3.60921I
u = 0.039909 0.910777I
3.76737 2.61939I 8.11481 + 3.60921I
u = 0.638378 + 0.466853I
0.63403 + 3.08008I 2.04297 2.82964I
u = 0.638378 0.466853I
0.63403 3.08008I 2.04297 + 2.82964I
u = 0.883157 + 0.890417I
6.63583 1.57218I 0.12166 + 2.29522I
u = 0.883157 0.890417I
6.63583 + 1.57218I 0.12166 2.29522I
u = 0.906724 + 0.884305I
8.32116 3.84160I 2.22402 + 2.38554I
u = 0.906724 0.884305I
8.32116 + 3.84160I 2.22402 2.38554I
u = 0.859271 + 0.947484I
6.45491 4.87894I 0.44407 + 2.58342I
u = 0.859271 0.947484I
6.45491 + 4.87894I 0.44407 2.58342I
u = 0.895419 + 0.930518I
12.40930 + 3.30322I 5.60088 2.43434I
u = 0.895419 0.930518I
12.40930 3.30322I 5.60088 + 2.43434I
u = 0.868488 + 0.965452I
8.06054 + 10.39450I 1.68269 7.07233I
u = 0.868488 0.965452I
8.06054 10.39450I 1.68269 + 7.07233I
u = 0.320922 + 0.618972I
0.204139 + 1.110190I 3.08627 5.87957I
u = 0.320922 0.618972I
0.204139 1.110190I 3.08627 + 5.87957I
u = 0.510161 + 0.301021I
0.10636 + 1.48443I 1.33713 3.68159I
u = 0.510161 0.301021I
0.10636 1.48443I 1.33713 + 3.68159I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
24
+ u
23
+ ··· + 2u + 1
c
2
, c
9
u
24
+ u
23
+ ··· 2u + 1
c
3
, c
10
u
24
+ 9u
23
+ ··· + 4u + 1
c
4
, c
5
, c
7
c
8
u
24
5u
23
+ ··· 4u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
24
+ 5y
23
+ ··· + 4y + 1
c
2
, c
9
y
24
+ 9y
23
+ ··· + 4y + 1
c
3
, c
10
y
24
+ 13y
23
+ ··· + 44y + 1
c
4
, c
5
, c
7
c
8
y
24
+ 29y
23
+ ··· + 20y + 1
7