12a
0401
(K12a
0401
)
A knot diagram
1
Linearized knot diagam
3 6 9 11 2 1 12 4 8 5 10 7
Solving Sequence
4,8
9 10
3,12
7 1 6 2 11 5
c
8
c
9
c
3
c
7
c
12
c
6
c
2
c
11
c
4
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
36
u
35
+ ··· + 32b + 1, u
4
u
2
+ a 1, u
37
+ 7u
35
+ ··· + 2u 1i
I
u
2
= h−3.61451 × 10
30
u
51
1.19611 × 10
30
u
50
+ ··· + 2.94109 × 10
31
b + 1.36329 × 10
32
,
4.07622 × 10
32
u
51
5.85781 × 10
32
u
50
+ ··· + 4.99985 × 10
32
a + 2.17209 × 10
32
,
u
52
+ u
51
+ ··· + 30u + 17i
I
u
3
= hb
5
+ b
4
u + 2b
3
+ b
2
u + b u, a + 1, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 99 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
36
u
35
+ · · · + 32b + 1, u
4
u
2
+ a 1, u
37
+ 7u
35
+ · · · + 2u 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
12
=
u
4
+ u
2
+ 1
0.0312500u
36
+ 0.0312500u
35
+ ··· + 0.0937500u 0.0312500
a
7
=
0.0312500u
36
+ 0.0312500u
35
+ ··· + 0.0937500u + 0.968750
0.343750u
36
0.406250u
35
+ ··· 1.34375u + 0.468750
a
1
=
1
4
u
36
5
16
u
35
+ ···
17
16
u +
11
8
0.812500u
36
+ 1.50000u
35
+ ··· + 5.93750u 2.25000
a
6
=
1
8
u
36
+
5
8
u
35
+ ··· +
47
16
u
3
16
0.562500u
36
1.37500u
35
+ ··· 8.62500u + 3.93750
a
2
=
1
8
u
36
+
5
8
u
35
+ ··· +
47
16
u
3
16
19
16
u
36
+ 2u
35
+ ··· +
123
16
u
23
8
a
11
=
1
0.0312500u
36
+ 0.0312500u
35
+ ··· + 0.0937500u 0.0312500
a
5
=
u
0.0312500u
36
0.0312500u
35
+ ··· + 0.968750u + 0.0312500
(ii) Obstruction class = 1
(iii) Cusp Shapes =
67
8
u
36
29
8
u
35
+ ···
13
4
u +
19
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
37
+ 21u
36
+ ··· 3u + 4
c
2
, c
5
u
37
+ 3u
36
+ ··· + 9u + 2
c
3
, c
4
, c
8
c
10
u
37
+ 7u
35
+ ··· + 2u + 1
c
6
, c
7
, c
12
u
37
+ 9u
36
+ ··· + 251u + 22
c
9
, c
11
u
37
14u
36
+ ··· 10u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
37
9y
36
+ ··· + 289y 16
c
2
, c
5
y
37
21y
36
+ ··· 3y 4
c
3
, c
4
, c
8
c
10
y
37
+ 14y
36
+ ··· 10y 1
c
6
, c
7
, c
12
y
37
+ 39y
36
+ ··· 1987y 484
c
9
, c
11
y
37
+ 30y
36
+ ··· + 38y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.670225 + 0.795123I
a = 0.285502 0.675689I
b = 0.008509 0.791858I
4.22390 + 4.84801I 8.67350 6.63268I
u = 0.670225 0.795123I
a = 0.285502 + 0.675689I
b = 0.008509 + 0.791858I
4.22390 4.84801I 8.67350 + 6.63268I
u = 0.480944 + 0.804131I
a = 0.158893 + 0.131000I
b = 0.330381 + 1.003000I
0.56798 1.62654I 2.47163 + 4.05064I
u = 0.480944 0.804131I
a = 0.158893 0.131000I
b = 0.330381 1.003000I
0.56798 + 1.62654I 2.47163 4.05064I
u = 0.885704 + 0.619459I
a = 0.35724 1.97679I
b = 0.07168 1.57263I
8.61348 + 0.58442I 6.58298 2.11216I
u = 0.885704 0.619459I
a = 0.35724 + 1.97679I
b = 0.07168 + 1.57263I
8.61348 0.58442I 6.58298 + 2.11216I
u = 0.906376 + 0.600235I
a = 0.49006 + 2.09180I
b = 0.14833 + 1.65936I
12.33880 + 4.27785I 9.74358 1.05951I
u = 0.906376 0.600235I
a = 0.49006 2.09180I
b = 0.14833 1.65936I
12.33880 4.27785I 9.74358 + 1.05951I
u = 0.378523 + 0.822123I
a = 0.363700 + 0.040587I
b = 0.35329 1.39171I
3.60485 2.81236I 5.70776 1.61824I
u = 0.378523 0.822123I
a = 0.363700 0.040587I
b = 0.35329 + 1.39171I
3.60485 + 2.81236I 5.70776 + 1.61824I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.509957 + 0.977159I
a = 0.205307 0.388248I
b = 0.927591 + 0.449842I
2.09312 1.88703I 0.31539 + 1.43334I
u = 0.509957 0.977159I
a = 0.205307 + 0.388248I
b = 0.927591 0.449842I
2.09312 + 1.88703I 0.31539 1.43334I
u = 0.898488 + 0.646158I
a = 0.19345 + 2.06625I
b = 0.04381 + 1.61320I
12.51130 5.32419I 9.84317 + 5.18460I
u = 0.898488 0.646158I
a = 0.19345 2.06625I
b = 0.04381 1.61320I
12.51130 + 5.32419I 9.84317 5.18460I
u = 0.542969 + 1.023650I
a = 0.421670 + 0.562576I
b = 0.950468 0.040357I
2.66475 + 6.19686I 1.89152 7.89879I
u = 0.542969 1.023650I
a = 0.421670 0.562576I
b = 0.950468 + 0.040357I
2.66475 6.19686I 1.89152 + 7.89879I
u = 0.635272 + 0.460063I
a = 0.887068 0.808887I
b = 0.342500 0.887718I
3.54036 2.08020I 9.14141 + 1.19821I
u = 0.635272 0.460063I
a = 0.887068 + 0.808887I
b = 0.342500 + 0.887718I
3.54036 + 2.08020I 9.14141 1.19821I
u = 0.656373 + 1.034940I
a = 1.076160 0.381174I
b = 0.199892 0.364140I
2.70237 5.71429I 7.25295 + 4.84897I
u = 0.656373 1.034940I
a = 1.076160 + 0.381174I
b = 0.199892 + 0.364140I
2.70237 + 5.71429I 7.25295 4.84897I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.290646 + 0.717353I
a = 0.581001 0.058279I
b = 0.274591 1.313790I
3.81002 + 5.56820I 6.98582 8.76899I
u = 0.290646 0.717353I
a = 0.581001 + 0.058279I
b = 0.274591 + 1.313790I
3.81002 5.56820I 6.98582 + 8.76899I
u = 0.593670 + 1.080170I
a = 0.796092 + 0.806284I
b = 0.797124 + 0.561418I
1.77541 + 7.53533I 1.12920 6.50404I
u = 0.593670 1.080170I
a = 0.796092 0.806284I
b = 0.797124 0.561418I
1.77541 7.53533I 1.12920 + 6.50404I
u = 0.607709 + 1.116880I
a = 0.949770 1.026550I
b = 0.797104 0.922482I
0.06576 11.98300I 2.00000 + 11.09767I
u = 0.607709 1.116880I
a = 0.949770 + 1.026550I
b = 0.797104 + 0.922482I
0.06576 + 11.98300I 2.00000 11.09767I
u = 0.358680 + 0.579084I
a = 0.663465 + 0.243691I
b = 0.108400 + 0.864333I
0.64632 1.44283I 3.81239 + 5.10481I
u = 0.358680 0.579084I
a = 0.663465 0.243691I
b = 0.108400 0.864333I
0.64632 + 1.44283I 3.81239 5.10481I
u = 0.675999 + 1.162370I
a = 1.56435 1.23880I
b = 0.24445 1.54342I
5.08320 11.27570I 2.00000 + 6.81954I
u = 0.675999 1.162370I
a = 1.56435 + 1.23880I
b = 0.24445 + 1.54342I
5.08320 + 11.27570I 2.00000 6.81954I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.691615 + 1.157430I
a = 1.68262 + 1.15689I
b = 0.07127 + 1.51795I
9.17720 + 6.73033I 6.31476 3.78221I
u = 0.691615 1.157430I
a = 1.68262 1.15689I
b = 0.07127 1.51795I
9.17720 6.73033I 6.31476 + 3.78221I
u = 0.675732 + 1.175560I
a = 1.59314 + 1.35142I
b = 0.27313 + 1.68404I
8.5942 + 16.2500I 5.34441 9.76292I
u = 0.675732 1.175560I
a = 1.59314 1.35142I
b = 0.27313 1.68404I
8.5942 16.2500I 5.34441 + 9.76292I
u = 0.069180 + 0.547631I
a = 0.786237 + 0.031049I
b = 0.723577 + 0.256788I
1.06858 1.83619I 0.74915 + 5.53995I
u = 0.069180 0.547631I
a = 0.786237 0.031049I
b = 0.723577 0.256788I
1.06858 + 1.83619I 0.74915 5.53995I
u = 0.401304
a = 1.18698
b = 0.303349
1.03663 10.7780
8
II. I
u
2
= h−3.61 × 10
30
u
51
1.20 × 10
30
u
50
+ · · · + 2.94 × 10
31
b + 1.36 ×
10
32
, 4.08 × 10
32
u
51
5.86 × 10
32
u
50
+ · · · + 5.00 × 10
32
a + 2.17 ×
10
32
, u
52
+ u
51
+ · · · + 30u + 17i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
12
=
0.815268u
51
+ 1.17160u
50
+ ··· + 23.9539u 0.434432
0.122897u
51
+ 0.0406690u
50
+ ··· 8.31341u 4.63532
a
7
=
0.603660u
51
0.550873u
50
+ ··· + 5.39906u + 8.11570
0.0396776u
51
+ 0.142896u
50
+ ··· + 13.1169u + 5.25900
a
1
=
1.06030u
51
+ 0.970299u
50
+ ··· + 4.31666u 8.59212
0.0653086u
51
0.273432u
50
+ ··· 17.3837u 7.10625
a
6
=
1.12011u
51
0.813324u
50
+ ··· + 13.6153u + 11.1311
0.0102037u
51
+ 0.271561u
50
+ ··· + 24.6387u + 7.82138
a
2
=
0.790972u
51
+ 0.764018u
50
+ ··· 5.28587u 8.80006
0.262347u
51
0.529752u
50
+ ··· 24.2991u 8.38601
a
11
=
0.580715u
51
+ 0.805430u
50
+ ··· + 15.6537u + 0.380740
1
a
5
=
0.165891u
51
+ 0.0542360u
50
+ ··· 24.5113u 11.6369
0.224715u
51
+ 0.113060u
50
+ ··· 16.0407u 9.87216
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.13196u
51
+ 1.65706u
50
+ ··· + 16.1608u 20.7826
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
26
+ 15u
25
+ ··· + 3u + 1)
2
c
2
, c
5
(u
26
u
25
+ ··· u + 1)
2
c
3
, c
4
, c
8
c
10
u
52
u
51
+ ··· 30u + 17
c
6
, c
7
, c
12
(u
26
3u
25
+ ··· 11u + 3)
2
c
9
, c
11
u
52
27u
51
+ ··· 3996u + 289
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
26
7y
25
+ ··· + 13y + 1)
2
c
2
, c
5
(y
26
15y
25
+ ··· 3y + 1)
2
c
3
, c
4
, c
8
c
10
y
52
+ 27y
51
+ ··· + 3996y + 289
c
6
, c
7
, c
12
(y
26
+ 29y
25
+ ··· + 65y + 9)
2
c
9
, c
11
y
52
5y
51
+ ··· + 1807796y + 83521
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.550343 + 0.827493I
a = 1.93277 + 2.59907I
b = 0.09022 + 1.52061I
4.80817 2.43962I 5.44223 + 0.17519I
u = 0.550343 0.827493I
a = 1.93277 2.59907I
b = 0.09022 1.52061I
4.80817 + 2.43962I 5.44223 0.17519I
u = 0.529126 + 0.860647I
a = 1.71257 2.53937I
b = 0.08534 1.44303I
1.01859 2.13264I 1.81035 + 3.16032I
u = 0.529126 0.860647I
a = 1.71257 + 2.53937I
b = 0.08534 + 1.44303I
1.01859 + 2.13264I 1.81035 3.16032I
u = 0.554054 + 0.884455I
a = 1.61427 + 2.72347I
b = 0.19366 + 1.58163I
4.61871 + 6.86486I 4.85861 6.16378I
u = 0.554054 0.884455I
a = 1.61427 2.72347I
b = 0.19366 1.58163I
4.61871 6.86486I 4.85861 + 6.16378I
u = 0.951071 + 0.433551I
a = 0.04083 1.86805I
b = 0.17008 1.55712I
7.30647 + 5.33673I 5.16942 2.96646I
u = 0.951071 0.433551I
a = 0.04083 + 1.86805I
b = 0.17008 + 1.55712I
7.30647 5.33673I 5.16942 + 2.96646I
u = 0.764264 + 0.566838I
a = 0.607267 0.533028I
b = 0.087798 0.532774I
4.08260 + 0.32949I 9.60033 + 0.20899I
u = 0.764264 0.566838I
a = 0.607267 + 0.533028I
b = 0.087798 + 0.532774I
4.08260 0.32949I 9.60033 0.20899I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.968590 + 0.418641I
a = 0.06346 + 2.01829I
b = 0.21971 + 1.67621I
10.9094 10.2647I 8.13372 + 5.98641I
u = 0.968590 0.418641I
a = 0.06346 2.01829I
b = 0.21971 1.67621I
10.9094 + 10.2647I 8.13372 5.98641I
u = 0.537250 + 0.915539I
a = 0.712664 + 0.797756I
b = 0.599592 + 0.613984I
0.11782 2.56217I 2.00000 + 2.97329I
u = 0.537250 0.915539I
a = 0.712664 0.797756I
b = 0.599592 0.613984I
0.11782 + 2.56217I 2.00000 2.97329I
u = 0.961357 + 0.458080I
a = 0.24305 + 1.92202I
b = 0.02106 + 1.56255I
11.31370 0.70419I 8.80376 0.14810I
u = 0.961357 0.458080I
a = 0.24305 1.92202I
b = 0.02106 1.56255I
11.31370 + 0.70419I 8.80376 + 0.14810I
u = 0.383435 + 0.995342I
a = 0.84645 1.77462I
b = 0.603458 0.686824I
2.92792 3.85582I 0. + 7.89236I
u = 0.383435 0.995342I
a = 0.84645 + 1.77462I
b = 0.603458 + 0.686824I
2.92792 + 3.85582I 0. 7.89236I
u = 0.669360 + 0.847773I
a = 1.148410 0.546853I
b = 0.087798 0.532774I
4.08260 + 0.32949I 9.60033 + 0.20899I
u = 0.669360 0.847773I
a = 1.148410 + 0.546853I
b = 0.087798 + 0.532774I
4.08260 0.32949I 9.60033 0.20899I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.284204 + 1.048140I
a = 0.627711 + 1.198740I
b = 0.559166 + 0.216872I
4.34028 + 0.21572I 5.69812 1.13318I
u = 0.284204 1.048140I
a = 0.627711 1.198740I
b = 0.559166 0.216872I
4.34028 0.21572I 5.69812 + 1.13318I
u = 0.786486 + 0.369460I
a = 0.422286 0.769115I
b = 0.648696 0.938364I
2.10171 + 6.75127I 5.33497 7.43906I
u = 0.786486 0.369460I
a = 0.422286 + 0.769115I
b = 0.648696 + 0.938364I
2.10171 6.75127I 5.33497 + 7.43906I
u = 0.577721 + 0.996615I
a = 0.768435 1.108730I
b = 0.648696 0.938364I
2.10171 + 6.75127I 5.33497 7.43906I
u = 0.577721 0.996615I
a = 0.768435 + 1.108730I
b = 0.648696 + 0.938364I
2.10171 6.75127I 5.33497 + 7.43906I
u = 0.342052 + 0.774444I
a = 0.464099 + 0.449574I
b = 0.791162 + 0.159676I
1.10848 1.93104I 0.74595 + 4.18474I
u = 0.342052 0.774444I
a = 0.464099 0.449574I
b = 0.791162 0.159676I
1.10848 + 1.93104I 0.74595 4.18474I
u = 0.224633 + 1.133270I
a = 0.300749 + 0.796598I
b = 0.559166 0.216872I
4.34028 0.21572I 5.69812 + 0.I
u = 0.224633 1.133270I
a = 0.300749 0.796598I
b = 0.559166 + 0.216872I
4.34028 + 0.21572I 5.69812 + 0.I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.036728 + 1.177540I
a = 0.397670 0.124485I
b = 0.313295 + 0.402304I
1.71189 1.00473I 5.82896 + 0.I
u = 0.036728 1.177540I
a = 0.397670 + 0.124485I
b = 0.313295 0.402304I
1.71189 + 1.00473I 5.82896 + 0.I
u = 0.690243 + 0.417206I
a = 0.132047 + 0.281676I
b = 0.599592 + 0.613984I
0.11782 2.56217I 1.94700 + 2.97329I
u = 0.690243 0.417206I
a = 0.132047 0.281676I
b = 0.599592 0.613984I
0.11782 + 2.56217I 1.94700 2.97329I
u = 0.203821 + 1.221330I
a = 0.017866 0.514233I
b = 0.603458 + 0.686824I
2.92792 + 3.85582I 0
u = 0.203821 1.221330I
a = 0.017866 + 0.514233I
b = 0.603458 0.686824I
2.92792 3.85582I 0
u = 0.220997 + 0.724279I
a = 2.17171 0.98902I
b = 0.313295 0.402304I
1.71189 + 1.00473I 5.82896 0.57498I
u = 0.220997 0.724279I
a = 2.17171 + 0.98902I
b = 0.313295 + 0.402304I
1.71189 1.00473I 5.82896 + 0.57498I
u = 0.720229 + 1.047070I
a = 1.40344 1.54237I
b = 0.17008 1.55712I
7.30647 + 5.33673I 0
u = 0.720229 1.047070I
a = 1.40344 + 1.54237I
b = 0.17008 + 1.55712I
7.30647 5.33673I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.741481 + 1.037370I
a = 1.54716 + 1.50406I
b = 0.02106 + 1.56255I
11.31370 0.70419I 0
u = 0.741481 1.037370I
a = 1.54716 1.50406I
b = 0.02106 1.56255I
11.31370 + 0.70419I 0
u = 0.722575 + 1.066990I
a = 1.39072 + 1.66975I
b = 0.21971 + 1.67621I
10.9094 10.2647I 0
u = 0.722575 1.066990I
a = 1.39072 1.66975I
b = 0.21971 1.67621I
10.9094 + 10.2647I 0
u = 0.117241 + 1.324870I
a = 0.0151086 + 0.0789385I
b = 0.08534 + 1.44303I
1.01859 + 2.13264I 0
u = 0.117241 1.324870I
a = 0.0151086 0.0789385I
b = 0.08534 1.44303I
1.01859 2.13264I 0
u = 0.095137 + 1.336100I
a = 0.059114 0.156098I
b = 0.09022 1.52061I
4.80817 + 2.43962I 0
u = 0.095137 1.336100I
a = 0.059114 + 0.156098I
b = 0.09022 + 1.52061I
4.80817 2.43962I 0
u = 0.131274 + 1.342360I
a = 0.105716 0.128904I
b = 0.19366 1.58163I
4.61871 6.86486I 0
u = 0.131274 1.342360I
a = 0.105716 + 0.128904I
b = 0.19366 + 1.58163I
4.61871 + 6.86486I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.409385 + 0.446289I
a = 0.286631 0.591162I
b = 0.791162 + 0.159676I
1.10848 1.93104I 0.74595 + 4.18474I
u = 0.409385 0.446289I
a = 0.286631 + 0.591162I
b = 0.791162 0.159676I
1.10848 + 1.93104I 0.74595 4.18474I
17
III. I
u
3
= hb
5
+ b
4
u + 2b
3
+ b
2
u + b u, a + 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
1
a
10
=
0
1
a
3
=
u
0
a
12
=
1
b
a
7
=
b + 1
b
2
a
1
=
b
2
+ b 1
b
3
+ b
a
6
=
b
3
+ b
2
2b + 1
b
4
+ 2b
2
a
2
=
b
3
b
2
+ 2b 1
b
3
+ b
a
11
=
1
b 1
a
5
=
u
bu
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
3
u 8bu
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
2
, c
5
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1
c
3
, c
4
, c
8
c
10
(u
2
+ 1)
5
c
6
, c
7
, c
12
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
c
9
, c
11
(u 1)
10
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
2
, c
5
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
c
3
, c
4
, c
8
c
10
(y + 1)
10
c
6
, c
7
, c
12
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
c
9
, c
11
(y 1)
10
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.217740I
0.888787 2.51890
u = 1.000000I
a = 1.00000
b = 0.549911 + 0.309916I
2.96077 + 1.53058I 3.48489 4.43065I
u = 1.000000I
a = 1.00000
b = 0.549911 + 0.309916I
2.96077 1.53058I 3.48489 + 4.43065I
u = 1.000000I
a = 1.00000
b = 0.21917 1.41878I
2.58269 4.40083I 0.74431 + 3.49859I
u = 1.000000I
a = 1.00000
b = 0.21917 1.41878I
2.58269 + 4.40083I 0.74431 3.49859I
u = 1.000000I
a = 1.00000
b = 1.217740I
0.888787 2.51890
u = 1.000000I
a = 1.00000
b = 0.549911 0.309916I
2.96077 1.53058I 3.48489 + 4.43065I
u = 1.000000I
a = 1.00000
b = 0.549911 0.309916I
2.96077 + 1.53058I 3.48489 4.43065I
u = 1.000000I
a = 1.00000
b = 0.21917 + 1.41878I
2.58269 + 4.40083I 0.74431 3.49859I
u = 1.000000I
a = 1.00000
b = 0.21917 + 1.41878I
2.58269 4.40083I 0.74431 + 3.49859I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
5
3u
4
+ 4u
3
u
2
u + 1)
2
)(u
26
+ 15u
25
+ ··· + 3u + 1)
2
· (u
37
+ 21u
36
+ ··· 3u + 4)
c
2
, c
5
(u
10
3u
8
+ 4u
6
u
4
u
2
+ 1)(u
26
u
25
+ ··· u + 1)
2
· (u
37
+ 3u
36
+ ··· + 9u + 2)
c
3
, c
4
, c
8
c
10
((u
2
+ 1)
5
)(u
37
+ 7u
35
+ ··· + 2u + 1)(u
52
u
51
+ ··· 30u + 17)
c
6
, c
7
, c
12
(u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1)(u
26
3u
25
+ ··· 11u + 3)
2
· (u
37
+ 9u
36
+ ··· + 251u + 22)
c
9
, c
11
((u 1)
10
)(u
37
14u
36
+ ··· 10u + 1)
· (u
52
27u
51
+ ··· 3996u + 289)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
)(y
26
7y
25
+ ··· + 13y + 1)
2
· (y
37
9y
36
+ ··· + 289y 16)
c
2
, c
5
((y
5
3y
4
+ 4y
3
y
2
y + 1)
2
)(y
26
15y
25
+ ··· 3y + 1)
2
· (y
37
21y
36
+ ··· 3y 4)
c
3
, c
4
, c
8
c
10
((y + 1)
10
)(y
37
+ 14y
36
+ ··· 10y 1)
· (y
52
+ 27y
51
+ ··· + 3996y + 289)
c
6
, c
7
, c
12
((y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
)(y
26
+ 29y
25
+ ··· + 65y + 9)
2
· (y
37
+ 39y
36
+ ··· 1987y 484)
c
9
, c
11
((y 1)
10
)(y
37
+ 30y
36
+ ··· + 38y 1)
· (y
52
5y
51
+ ··· + 1807796y + 83521)
23