12a
0411
(K12a
0411
)
A knot diagram
1
Linearized knot diagam
3 6 9 12 2 10 11 1 5 7 8 4
Solving Sequence
6,10
7 11 8
3,12
2 1 5 4 9
c
6
c
10
c
7
c
11
c
2
c
1
c
5
c
4
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.05318 × 10
105
u
79
2.71139 × 10
106
u
78
+ ··· + 6.14360 × 10
104
b + 1.09875 × 10
106
,
1.04172 × 10
107
u
79
+ 4.58247 × 10
107
u
78
+ ··· + 3.07180 × 10
104
a 1.70407 × 10
107
, u
80
+ 5u
79
+ ··· 6u 1i
I
u
2
= ha
2
+ 6b + 4a + 4, a
4
+ 2a
3
+ 6a
2
4a + 4, u + 1i
* 2 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.05 × 10
105
u
79
2.71 × 10
106
u
78
+ · · · + 6.14 × 10
104
b + 1.10 ×
10
106
, 1.04 × 10
107
u
79
+ 4.58 × 10
107
u
78
+ · · · + 3.07 × 10
104
a 1.70 ×
10
107
, u
80
+ 5u
79
+ · · · 6u 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
3
=
339.123u
79
1491.79u
78
+ ··· + 2436.78u + 554.746
9.85281u
79
+ 44.1335u
78
+ ··· 72.3996u 17.8844
a
12
=
u
3
+ 2u
u
5
3u
3
+ u
a
2
=
329.270u
79
1447.65u
78
+ ··· + 2364.38u + 536.861
9.85281u
79
+ 44.1335u
78
+ ··· 72.3996u 17.8844
a
1
=
405.884u
79
1783.77u
78
+ ··· + 2936.77u + 667.230
9.50049u
79
43.5798u
78
+ ··· + 69.1784u + 16.0314
a
5
=
142.976u
79
+ 628.242u
78
+ ··· 1036.69u 240.087
19.2570u
79
82.9318u
78
+ ··· + 136.175u + 30.0287
a
4
=
164.052u
79
+ 719.781u
78
+ ··· 1187.59u 274.887
18.4406u
79
79.7156u
78
+ ··· + 130.155u + 28.5642
a
9
=
3509.05u
79
15418.0u
78
+ ··· + 25205.3u + 5785.93
176.743u
79
+ 775.971u
78
+ ··· 1267.41u 292.353
(ii) Obstruction class = 1
(iii) Cusp Shapes = 219.391u
79
967.071u
78
+ ··· + 1569.64u + 365.051
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
80
+ 29u
79
+ ··· + 13u + 4
c
2
, c
5
u
80
+ 5u
79
+ ··· 5u + 2
c
3
u
80
u
79
+ ··· 10u 1
c
4
, c
12
u
80
+ 5u
79
+ ··· + 14u + 1
c
6
, c
7
, c
10
c
11
u
80
5u
79
+ ··· + 6u 1
c
8
u
80
+ 7u
79
+ ··· 616u 121
c
9
u
80
+ 15u
79
+ ··· 497268u 29873
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
80
+ 47y
79
+ ··· 19809y + 16
c
2
, c
5
y
80
29y
79
+ ··· 13y + 4
c
3
y
80
+ 9y
79
+ ··· 98y + 1
c
4
, c
12
y
80
+ 45y
79
+ ··· 134y + 1
c
6
, c
7
, c
10
c
11
y
80
95y
79
+ ··· 50y + 1
c
8
y
80
+ 299y
79
+ ··· 532400y + 14641
c
9
y
80
321y
79
+ ··· 110926727384y + 892396129
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.982239 + 0.110037I
a = 0.60518 + 1.80389I
b = 0.832671 0.498946I
1.69931 2.04874I 0
u = 0.982239 0.110037I
a = 0.60518 1.80389I
b = 0.832671 + 0.498946I
1.69931 + 2.04874I 0
u = 0.759367 + 0.618307I
a = 0.344166 + 0.141148I
b = 0.830140 0.649151I
2.36183 + 0.48997I 0
u = 0.759367 0.618307I
a = 0.344166 0.141148I
b = 0.830140 + 0.649151I
2.36183 0.48997I 0
u = 0.874853 + 0.530372I
a = 0.802361 + 0.585193I
b = 0.571602 0.856402I
1.75059 + 7.74311I 0
u = 0.874853 0.530372I
a = 0.802361 0.585193I
b = 0.571602 + 0.856402I
1.75059 7.74311I 0
u = 0.873797 + 0.412672I
a = 0.39497 + 1.86274I
b = 1.069280 0.698680I
3.64655 + 8.02514I 0
u = 0.873797 0.412672I
a = 0.39497 1.86274I
b = 1.069280 + 0.698680I
3.64655 8.02514I 0
u = 0.655250 + 0.692019I
a = 0.86289 1.33749I
b = 0.869750 + 0.660212I
2.24057 4.60261I 0
u = 0.655250 0.692019I
a = 0.86289 + 1.33749I
b = 0.869750 0.660212I
2.24057 + 4.60261I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.862986 + 0.606936I
a = 0.60152 1.82721I
b = 1.072300 + 0.693311I
0.23574 + 13.50530I 0
u = 0.862986 0.606936I
a = 0.60152 + 1.82721I
b = 1.072300 0.693311I
0.23574 13.50530I 0
u = 0.890674 + 0.278765I
a = 0.775206 0.805171I
b = 0.569460 + 0.870192I
5.15281 + 2.22250I 0
u = 0.890674 0.278765I
a = 0.775206 + 0.805171I
b = 0.569460 0.870192I
5.15281 2.22250I 0
u = 1.001950 + 0.553061I
a = 0.32963 + 1.53584I
b = 0.763637 0.645618I
2.03589 1.14374I 0
u = 1.001950 0.553061I
a = 0.32963 1.53584I
b = 0.763637 + 0.645618I
2.03589 + 1.14374I 0
u = 0.086726 + 0.850018I
a = 0.681133 + 0.501362I
b = 1.019290 0.654420I
2.13020 8.69514I 0
u = 0.086726 0.850018I
a = 0.681133 0.501362I
b = 1.019290 + 0.654420I
2.13020 + 8.69514I 0
u = 0.673885 + 0.494383I
a = 0.633666 + 0.692030I
b = 1.176500 0.080914I
4.82659 + 6.36458I 0
u = 0.673885 0.494383I
a = 0.633666 0.692030I
b = 1.176500 + 0.080914I
4.82659 6.36458I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.731433 + 0.268270I
a = 0.380165 + 0.677378I
b = 0.017151 + 0.232479I
0.144692 0.492251I 0
u = 0.731433 0.268270I
a = 0.380165 0.677378I
b = 0.017151 0.232479I
0.144692 + 0.492251I 0
u = 0.000926 + 0.775832I
a = 0.416848 0.459903I
b = 0.600120 + 0.713934I
0.90150 3.42282I 0
u = 0.000926 0.775832I
a = 0.416848 + 0.459903I
b = 0.600120 0.713934I
0.90150 + 3.42282I 0
u = 1.127500 + 0.540430I
a = 0.446319 0.595511I
b = 0.930935 + 0.641996I
1.51642 + 3.88958I 0
u = 1.127500 0.540430I
a = 0.446319 + 0.595511I
b = 0.930935 0.641996I
1.51642 3.88958I 0
u = 0.705170 + 0.221551I
a = 0.143659 1.137600I
b = 0.379959 + 0.898795I
0.71940 + 3.75775I 6.00000 11.49284I
u = 0.705170 0.221551I
a = 0.143659 + 1.137600I
b = 0.379959 0.898795I
0.71940 3.75775I 6.00000 + 11.49284I
u = 1.272480 + 0.232109I
a = 0.077573 1.327820I
b = 0.862974 + 0.150904I
1.44152 0.51003I 0
u = 1.272480 0.232109I
a = 0.077573 + 1.327820I
b = 0.862974 0.150904I
1.44152 + 0.51003I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.243048 + 0.629200I
a = 1.17488 + 1.11461I
b = 1.061150 0.014230I
6.12935 2.55225I 1.74573 + 1.31196I
u = 0.243048 0.629200I
a = 1.17488 1.11461I
b = 1.061150 + 0.014230I
6.12935 + 2.55225I 1.74573 1.31196I
u = 0.111177 + 0.623613I
a = 1.101240 0.355446I
b = 0.975206 + 0.620136I
0.69805 4.57533I 7.44408 + 5.23824I
u = 0.111177 0.623613I
a = 1.101240 + 0.355446I
b = 0.975206 0.620136I
0.69805 + 4.57533I 7.44408 5.23824I
u = 0.310855 + 0.540574I
a = 0.484610 0.177259I
b = 0.699014 0.609698I
1.56224 + 0.31078I 10.32905 0.04232I
u = 0.310855 0.540574I
a = 0.484610 + 0.177259I
b = 0.699014 + 0.609698I
1.56224 0.31078I 10.32905 + 0.04232I
u = 0.604081 + 0.001377I
a = 13.5746 17.1139I
b = 0.877405 + 0.507465I
0.68319 2.03117I 157.990 13.051I
u = 0.604081 0.001377I
a = 13.5746 + 17.1139I
b = 0.877405 0.507465I
0.68319 + 2.03117I 157.990 + 13.051I
u = 0.540486 + 0.177581I
a = 0.36709 2.47230I
b = 1.008760 + 0.761264I
1.52216 + 3.07297I 0.13001 12.94551I
u = 0.540486 0.177581I
a = 0.36709 + 2.47230I
b = 1.008760 0.761264I
1.52216 3.07297I 0.13001 + 12.94551I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.452044
a = 0.820522
b = 0.201146
0.707924 14.1880
u = 1.54810 + 0.07689I
a = 0.806628 + 0.115866I
b = 0.972871 + 0.136497I
5.02760 + 3.22521I 0
u = 1.54810 0.07689I
a = 0.806628 0.115866I
b = 0.972871 0.136497I
5.02760 3.22521I 0
u = 0.357453 + 0.272374I
a = 0.28354 1.47622I
b = 1.082900 + 0.195290I
1.99021 + 1.12837I 0.61556 4.33419I
u = 0.357453 0.272374I
a = 0.28354 + 1.47622I
b = 1.082900 0.195290I
1.99021 1.12837I 0.61556 + 4.33419I
u = 1.57162
a = 0.420961
b = 0.775180
7.67792 0
u = 1.57728 + 0.00721I
a = 0.560042 + 0.801944I
b = 1.37891 0.39634I
4.86129 1.42349I 0
u = 1.57728 0.00721I
a = 0.560042 0.801944I
b = 1.37891 + 0.39634I
4.86129 + 1.42349I 0
u = 1.59511 + 0.02885I
a = 0.80382 + 1.88339I
b = 1.05746 0.93966I
5.96830 3.68106I 0
u = 1.59511 0.02885I
a = 0.80382 1.88339I
b = 1.05746 + 0.93966I
5.96830 + 3.68106I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.209332 + 0.339332I
a = 0.70138 2.09676I
b = 0.567508 0.324974I
1.43343 2.05795I 2.20961 + 4.63586I
u = 0.209332 0.339332I
a = 0.70138 + 2.09676I
b = 0.567508 + 0.324974I
1.43343 + 2.05795I 2.20961 4.63586I
u = 1.59909 + 0.12620I
a = 0.154490 0.604773I
b = 1.277360 + 0.151788I
2.88077 8.60117I 0
u = 1.59909 0.12620I
a = 0.154490 + 0.604773I
b = 1.277360 0.151788I
2.88077 + 8.60117I 0
u = 1.60983 + 0.00290I
a = 1.69153 + 4.69097I
b = 0.914469 0.540849I
7.10700 + 2.05661I 0
u = 1.60983 0.00290I
a = 1.69153 4.69097I
b = 0.914469 + 0.540849I
7.10700 2.05661I 0
u = 1.62146 + 0.05130I
a = 0.25483 + 1.52795I
b = 0.314660 1.105270I
8.79176 4.72449I 0
u = 1.62146 0.05130I
a = 0.25483 1.52795I
b = 0.314660 + 1.105270I
8.79176 + 4.72449I 0
u = 0.331464 + 0.167817I
a = 0.790108 + 0.421831I
b = 1.086350 0.487000I
2.01483 1.42900I 2.63503 2.24034I
u = 0.331464 0.167817I
a = 0.790108 0.421831I
b = 1.086350 + 0.487000I
2.01483 + 1.42900I 2.63503 + 2.24034I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63729 + 0.04142I
a = 0.121690 + 0.165881I
b = 0.186036 0.459060I
8.44312 + 1.45094I 0
u = 1.63729 0.04142I
a = 0.121690 0.165881I
b = 0.186036 + 0.459060I
8.44312 1.45094I 0
u = 1.63038 + 0.22067I
a = 0.09225 + 1.74343I
b = 0.968177 0.699422I
9.99013 + 8.08376I 0
u = 1.63038 0.22067I
a = 0.09225 1.74343I
b = 0.968177 + 0.699422I
9.99013 8.08376I 0
u = 1.66412 + 0.07716I
a = 0.82132 + 1.36692I
b = 0.609910 1.021180I
14.0285 3.6133I 0
u = 1.66412 0.07716I
a = 0.82132 1.36692I
b = 0.609910 + 1.021180I
14.0285 + 3.6133I 0
u = 1.66410 + 0.11541I
a = 0.28155 1.88460I
b = 1.119640 + 0.766021I
12.4183 10.0748I 0
u = 1.66410 0.11541I
a = 0.28155 + 1.88460I
b = 1.119640 0.766021I
12.4183 + 10.0748I 0
u = 1.66377 + 0.17561I
a = 0.762447 0.909794I
b = 0.720008 + 0.743870I
10.73520 + 2.58534I 0
u = 1.66377 0.17561I
a = 0.762447 + 0.909794I
b = 0.720008 0.743870I
10.73520 2.58534I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.66760 + 0.15263I
a = 0.93902 1.16501I
b = 0.587447 + 0.950346I
10.4735 10.3982I 0
u = 1.66760 0.15263I
a = 0.93902 + 1.16501I
b = 0.587447 0.950346I
10.4735 + 10.3982I 0
u = 1.66703 + 0.17926I
a = 0.08049 + 1.99128I
b = 1.106230 0.731601I
8.8607 16.5566I 0
u = 1.66703 0.17926I
a = 0.08049 1.99128I
b = 1.106230 + 0.731601I
8.8607 + 16.5566I 0
u = 1.69474 + 0.10689I
a = 0.26077 1.84251I
b = 0.912299 + 0.690710I
11.56300 + 3.48604I 0
u = 1.69474 0.10689I
a = 0.26077 + 1.84251I
b = 0.912299 0.690710I
11.56300 3.48604I 0
u = 1.72076 + 0.06241I
a = 0.83025 + 1.28263I
b = 0.796402 0.710069I
11.91770 1.88395I 0
u = 1.72076 0.06241I
a = 0.83025 1.28263I
b = 0.796402 + 0.710069I
11.91770 + 1.88395I 0
u = 0.184682 + 0.116658I
a = 1.73641 5.49293I
b = 0.749491 0.451267I
1.42133 2.10255I 1.91167 + 3.48130I
u = 0.184682 0.116658I
a = 1.73641 + 5.49293I
b = 0.749491 + 0.451267I
1.42133 + 2.10255I 1.91167 3.48130I
12
II. I
u
2
= ha
2
+ 6b + 4a + 4, a
4
+ 2a
3
+ 6a
2
4a + 4, u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
1
a
7
=
1
1
a
11
=
1
0
a
8
=
0
1
a
3
=
a
1
6
a
2
2
3
a
2
3
a
12
=
1
1
a
2
=
1
6
a
2
+
1
3
a
2
3
1
6
a
2
2
3
a
2
3
a
1
=
1
6
a
3
1
6
a
2
2
3
a
1
6
a
3
+
1
6
a
2
+
2
3
a 1
a
5
=
1
6
a
2
1
3
a +
2
3
1
6
a
3
1
2
a
2
a
1
3
a
4
=
1
6
a
3
+
1
2
a
2
+ a +
1
3
1
3
a
3
5
6
a
2
7
3
a
a
9
=
1
6
a
3
+
1
6
a
2
1
3
a +
1
3
1
3
a
2
1
3
a
4
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2
3
a
3
+ 2a
2
+ 4a +
16
3
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
2
c
2
, c
5
u
4
u
2
+ 1
c
3
, c
4
, c
12
(u
2
+ 1)
2
c
6
, c
7
(u + 1)
4
c
8
u
4
+ 4u
3
+ 5u
2
+ 2u + 1
c
9
u
4
2u
3
+ 5u
2
4u + 1
c
10
, c
11
(u 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
2
c
2
, c
5
(y
2
y + 1)
2
c
3
, c
4
, c
12
(y + 1)
4
c
6
, c
7
, c
10
c
11
(y 1)
4
c
8
y
4
6y
3
+ 11y
2
+ 6y + 1
c
9
y
4
+ 6y
3
+ 11y
2
6y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.366025 + 0.633975I
b = 0.866025 0.500000I
2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.366025 0.633975I
b = 0.866025 + 0.500000I
2.02988I 6.00000 3.46410I
u = 1.00000
a = 1.36603 + 2.36603I
b = 0.866025 0.500000I
2.02988I 6.00000 3.46410I
u = 1.00000
a = 1.36603 2.36603I
b = 0.866025 + 0.500000I
2.02988I 6.00000 + 3.46410I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
80
+ 29u
79
+ ··· + 13u + 4)
c
2
, c
5
(u
4
u
2
+ 1)(u
80
+ 5u
79
+ ··· 5u + 2)
c
3
((u
2
+ 1)
2
)(u
80
u
79
+ ··· 10u 1)
c
4
, c
12
((u
2
+ 1)
2
)(u
80
+ 5u
79
+ ··· + 14u + 1)
c
6
, c
7
((u + 1)
4
)(u
80
5u
79
+ ··· + 6u 1)
c
8
(u
4
+ 4u
3
+ 5u
2
+ 2u + 1)(u
80
+ 7u
79
+ ··· 616u 121)
c
9
(u
4
2u
3
+ 5u
2
4u + 1)(u
80
+ 15u
79
+ ··· 497268u 29873)
c
10
, c
11
((u 1)
4
)(u
80
5u
79
+ ··· + 6u 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
2
)(y
80
+ 47y
79
+ ··· 19809y + 16)
c
2
, c
5
((y
2
y + 1)
2
)(y
80
29y
79
+ ··· 13y + 4)
c
3
((y + 1)
4
)(y
80
+ 9y
79
+ ··· 98y + 1)
c
4
, c
12
((y + 1)
4
)(y
80
+ 45y
79
+ ··· 134y + 1)
c
6
, c
7
, c
10
c
11
((y 1)
4
)(y
80
95y
79
+ ··· 50y + 1)
c
8
(y
4
6y
3
+ 11y
2
+ 6y + 1)(y
80
+ 299y
79
+ ··· 532400y + 14641)
c
9
(y
4
+ 6y
3
+ 11y
2
6y + 1)
· (y
80
321y
79
+ ··· 110926727384y + 892396129)
18