12a
0422
(K12a
0422
)
A knot diagram
1
Linearized knot diagam
3 6 10 7 2 5 11 12 1 4 8 9
Solving Sequence
8,11
12 9 1
4,7
5 6 10 3 2
c
11
c
8
c
12
c
7
c
4
c
6
c
10
c
3
c
2
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−47u
38
+ 152u
37
+ ··· + 2b + 26, 101u
38
320u
37
+ ··· + 4a 62, u
39
5u
38
+ ··· u + 1i
I
u
2
= hb, a
3
a
2
u a
2
+ 2au + 4a 2u 3, u
2
+ u 1i
I
u
3
= hb + 1, a 2, u + 1i
* 3 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−47u
38
+ 152u
37
+ · · · + 2b + 26, 101u
38
320u
37
+ · · · + 4a
62, u
39
5u
38
+ · · · u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
4
=
101
4
u
38
+ 80u
37
+ ···
27
4
u +
31
2
47
2
u
38
76u
37
+ ··· +
11
2
u 13
a
7
=
u
u
a
5
=
17.2500u
38
+ 54.7500u
37
+ ··· 3.75000u + 10.7500
31
2
u
38
203
4
u
37
+ ··· +
5
2
u
33
4
a
6
=
1
2
u
38
+
7
4
u
37
+ ··· 6u +
5
4
3
4
u
38
5
2
u
37
+ ··· +
1
4
u
1
2
a
10
=
u
3
+ 2u
u
5
3u
3
+ u
a
3
=
93
4
u
38
77u
37
+ ··· +
19
4
u
23
2
75
2
u
38
+ 122u
37
+ ···
19
2
u + 22
a
2
=
1
4
u
38
+
3
4
u
37
+ ··· +
19
4
u +
1
4
u
11
7u
9
+ 16u
7
2u
6
13u
5
+ 8u
4
+ 3u
3
6u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 64u
38
+ 210u
37
+ ··· 6u +
81
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
u
39
+ 8u
38
+ ··· + 42u + 1
c
2
, c
5
u
39
+ 2u
38
+ ··· 6u + 1
c
3
, c
10
u
39
+ 2u
38
+ ··· 160u 64
c
7
, c
8
, c
9
c
11
, c
12
u
39
5u
38
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
y
39
+ 48y
38
+ ··· + 978y 1
c
2
, c
5
y
39
8y
38
+ ··· + 42y 1
c
3
, c
10
y
39
34y
38
+ ··· + 25600y 4096
c
7
, c
8
, c
9
c
11
, c
12
y
39
55y
38
+ ··· 9y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.053960 + 0.224778I
a = 1.61876 + 0.68220I
b = 1.163720 + 0.312418I
4.49453 5.61479I 8.25857 + 7.26249I
u = 1.053960 0.224778I
a = 1.61876 0.68220I
b = 1.163720 0.312418I
4.49453 + 5.61479I 8.25857 7.26249I
u = 0.862747 + 0.116296I
a = 0.069535 0.131159I
b = 0.221452 + 0.784770I
1.42290 + 1.53553I 7.01176 4.72842I
u = 0.862747 0.116296I
a = 0.069535 + 0.131159I
b = 0.221452 0.784770I
1.42290 1.53553I 7.01176 + 4.72842I
u = 1.139060 + 0.026381I
a = 0.038812 + 0.168804I
b = 0.025448 + 1.175110I
8.36476 + 3.13639I 0
u = 1.139060 0.026381I
a = 0.038812 0.168804I
b = 0.025448 1.175110I
8.36476 3.13639I 0
u = 1.151060 + 0.133458I
a = 1.46113 0.36382I
b = 1.226750 0.126705I
6.34383 1.26782I 0
u = 1.151060 0.133458I
a = 1.46113 + 0.36382I
b = 1.226750 + 0.126705I
6.34383 + 1.26782I 0
u = 0.415029 + 0.681141I
a = 0.293962 0.902195I
b = 1.43879 0.09612I
8.68168 1.01341I 8.20452 0.45089I
u = 0.415029 0.681141I
a = 0.293962 + 0.902195I
b = 1.43879 + 0.09612I
8.68168 + 1.01341I 8.20452 + 0.45089I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.379187 + 0.691000I
a = 0.296338 + 0.946075I
b = 1.43542 + 0.18852I
8.57368 + 5.46017I 7.82438 5.30651I
u = 0.379187 0.691000I
a = 0.296338 0.946075I
b = 1.43542 0.18852I
8.57368 5.46017I 7.82438 + 5.30651I
u = 1.160140 + 0.396351I
a = 1.23807 + 0.87778I
b = 1.52336 + 0.47798I
13.3910 9.1863I 0
u = 1.160140 0.396351I
a = 1.23807 0.87778I
b = 1.52336 0.47798I
13.3910 + 9.1863I 0
u = 1.187780 + 0.377695I
a = 1.21277 0.82919I
b = 1.54397 0.40480I
13.72490 2.63237I 0
u = 1.187780 0.377695I
a = 1.21277 + 0.82919I
b = 1.54397 + 0.40480I
13.72490 + 2.63237I 0
u = 0.467926 + 0.375228I
a = 0.068401 0.656383I
b = 0.834315 + 0.134239I
1.190300 0.320599I 8.01474 0.06231I
u = 0.467926 0.375228I
a = 0.068401 + 0.656383I
b = 0.834315 0.134239I
1.190300 + 0.320599I 8.01474 + 0.06231I
u = 0.239901 + 0.477819I
a = 0.049714 + 1.108090I
b = 0.899573 + 0.293268I
0.46281 + 3.25190I 3.30026 8.26387I
u = 0.239901 0.477819I
a = 0.049714 1.108090I
b = 0.899573 0.293268I
0.46281 3.25190I 3.30026 + 8.26387I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.487731
a = 0.343685
b = 0.408979
0.740705 13.6330
u = 1.59861
a = 0.240120
b = 0.465924
8.08529 0
u = 0.345833 + 0.036532I
a = 0.12571 + 3.44175I
b = 0.000094 + 0.479895I
3.55637 2.89653I 3.84297 + 3.88300I
u = 0.345833 0.036532I
a = 0.12571 3.44175I
b = 0.000094 0.479895I
3.55637 + 2.89653I 3.84297 3.88300I
u = 1.67511 + 0.02701I
a = 0.088705 0.412032I
b = 0.229021 + 0.890141I
10.40850 2.06539I 0
u = 1.67511 0.02701I
a = 0.088705 + 0.412032I
b = 0.229021 0.890141I
10.40850 + 2.06539I 0
u = 1.73748
a = 2.04429
b = 1.35510
11.5719 0
u = 1.74621 + 0.05370I
a = 1.91054 + 0.23326I
b = 1.42871 + 0.37526I
14.5888 + 6.7421I 0
u = 1.74621 0.05370I
a = 1.91054 0.23326I
b = 1.42871 0.37526I
14.5888 6.7421I 0
u = 1.76716 + 0.00715I
a = 0.013757 0.629655I
b = 0.04950 + 1.56385I
18.9593 3.2843I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.76716 0.00715I
a = 0.013757 + 0.629655I
b = 0.04950 1.56385I
18.9593 + 3.2843I 0
u = 1.76755 + 0.03169I
a = 1.88452 0.11380I
b = 1.56905 0.21871I
16.9501 + 1.9651I 0
u = 1.76755 0.03169I
a = 1.88452 + 0.11380I
b = 1.56905 + 0.21871I
16.9501 1.9651I 0
u = 1.77210 + 0.10705I
a = 1.71021 + 0.26961I
b = 1.61742 + 0.71877I
15.5908 + 11.3747I 0
u = 1.77210 0.10705I
a = 1.71021 0.26961I
b = 1.61742 0.71877I
15.5908 11.3747I 0
u = 0.042751 + 0.219509I
a = 0.63189 + 2.24770I
b = 0.311409 + 0.398108I
1.261040 0.319837I 6.08687 + 0.82925I
u = 0.042751 0.219509I
a = 0.63189 2.24770I
b = 0.311409 0.398108I
1.261040 + 0.319837I 6.08687 0.82925I
u = 1.78078 + 0.09884I
a = 1.71959 0.23944I
b = 1.67156 0.66408I
15.0724 + 4.7212I 0
u = 1.78078 0.09884I
a = 1.71959 + 0.23944I
b = 1.67156 + 0.66408I
15.0724 4.7212I 0
8
II. I
u
2
= hb, a
3
a
2
u a
2
+ 2au + 4a 2u 3, u
2
+ u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u 1
a
9
=
u
u + 1
a
1
=
u
u
a
4
=
a
0
a
7
=
u
u
a
5
=
au
au + a
a
6
=
a
2
u + a
2
u
2a
2
u a
2
+ u
a
10
=
1
0
a
3
=
a
0
a
2
=
a
2
u + u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10a
2
u 9a
2
+ 6au a + 3u 1
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
, c
10
u
6
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
, c
9
(u
2
u 1)
3
c
11
, c
12
(u
2
+ u 1)
3
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
3
, c
10
y
6
c
7
, c
8
, c
9
c
11
, c
12
(y
2
3y + 1)
3
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.922021
b = 0
0.126494 0.954070
u = 0.618034
a = 0.34801 + 2.11500I
b = 0
4.01109 2.82812I 14.0681 + 1.5771I
u = 0.618034
a = 0.34801 2.11500I
b = 0
4.01109 + 2.82812I 14.0681 1.5771I
u = 1.61803
a = 0.132927 + 0.807858I
b = 0
11.90680 + 2.82812I 11.55793 3.24268I
u = 1.61803
a = 0.132927 0.807858I
b = 0
11.90680 2.82812I 11.55793 + 3.24268I
u = 1.61803
a = 0.352181
b = 0
7.76919 5.20600
12
III. I
u
3
= hb + 1, a 2, u + 1i
(i) Arc colorings
a
8
=
0
1
a
11
=
1
0
a
12
=
1
1
a
9
=
1
0
a
1
=
0
1
a
4
=
2
1
a
7
=
1
1
a
5
=
1
0
a
6
=
0
1
a
10
=
1
1
a
3
=
1
0
a
2
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
u + 1
c
3
, c
10
u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
1.64493 6.00000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u + 1)(u
3
u
2
+ 2u 1)
2
(u
39
+ 8u
38
+ ··· + 42u + 1)
c
2
(u + 1)(u
3
+ u
2
1)
2
(u
39
+ 2u
38
+ ··· 6u + 1)
c
3
, c
10
u
6
(u 1)(u
39
+ 2u
38
+ ··· 160u 64)
c
5
(u + 1)(u
3
u
2
+ 1)
2
(u
39
+ 2u
38
+ ··· 6u + 1)
c
6
(u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
39
+ 8u
38
+ ··· + 42u + 1)
c
7
, c
8
, c
9
(u + 1)(u
2
u 1)
3
(u
39
5u
38
+ ··· u + 1)
c
11
, c
12
(u + 1)(u
2
+ u 1)
3
(u
39
5u
38
+ ··· u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
39
+ 48y
38
+ ··· + 978y 1)
c
2
, c
5
(y 1)(y
3
y
2
+ 2y 1)
2
(y
39
8y
38
+ ··· + 42y 1)
c
3
, c
10
y
6
(y 1)(y
39
34y
38
+ ··· + 25600y 4096)
c
7
, c
8
, c
9
c
11
, c
12
(y 1)(y
2
3y + 1)
3
(y
39
55y
38
+ ··· 9y 1)
18