12a
0426
(K12a
0426
)
A knot diagram
1
Linearized knot diagam
3 6 10 7 2 9 11 5 1 12 8 4
Solving Sequence
7,11 5,8
9 12 4 1 6 10 3 2
c
7
c
8
c
11
c
4
c
12
c
6
c
10
c
3
c
2
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h5u
17
11u
16
+ ··· + 3b 11, u
17
+ u
16
+ ··· + 2a + 4, u
18
3u
17
+ ··· 6u + 2i
I
u
2
= h2.93297 × 10
19
u
49
3.08421 × 10
20
u
48
+ ··· + 4.46875 × 10
17
b 5.17754 × 10
20
,
2.95147 × 10
19
u
49
+ 6.16285 × 10
20
u
48
+ ··· + 5.80937 × 10
18
a + 6.41388 × 10
21
,
u
50
11u
49
+ ··· 165u + 13i
I
u
3
= h−u
5
a u
5
+ 2u
3
a + u
3
2au + b u + 1, 2u
4
a + u
3
a 3u
4
2u
2
a 2u
3
+ a
2
2au + u
2
+ 3u + 2,
u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
4
= hu
5
u
3
+ b + u, u
3
+ a, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
5
= h−2u
43
a 4u
42
a + ··· + 4b 65, 50u
43
a 95u
43
+ ··· 468a + 943, u
44
+ 3u
43
+ ··· 14u 1i
I
u
6
= h3u
15
+ 5u
14
4u
13
18u
12
11u
11
+ 4u
10
+ 4u
9
+ u
8
+ 21u
7
+ 32u
6
+ 22u
5
+ 9u
4
+ 10u
3
+ 5u
2
+ b u 1,
7u
15
28u
14
+ ··· + 2a 22, u
16
+ 4u
15
+ ··· + 8u + 2i
I
u
7
= h−u
2
a + b 1, a
2
+ 2au + 2u
2
+ a + 3u + 2, u
3
+ u
2
1i
I
u
8
= h−u
3
a u
2
a u
3
+ au + 2b + 1, u
2
a + u
3
+ a
2
+ au 2u
2
+ a u + 2, u
4
u
2
+ 1i
I
u
9
= h−71757a
7
+ 7931089b + ··· 9811314a + 3141666,
a
8
+ 6a
6
6a
5
+ 26a
4
18a
3
+ 87a
2
60a + 73, u 1i
* 9 irreducible components of dim
C
= 0, with total 212 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
1
I.
I
u
1
= h5u
17
11u
16
+· · ·+3b 11, u
17
+u
16
+· · ·+2a +4, u
18
3u
17
+· · ·6u +2i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
1
2
u
17
1
2
u
16
+ ···
3
2
u
2
2
5
3
u
17
+
11
3
u
16
+ ···
23
3
u +
11
3
a
8
=
1
u
2
a
9
=
1
2
u
17
5
2
u
16
+ ··· + 5u 3
5
3
u
17
+
11
3
u
16
+ ···
23
3
u +
11
3
a
12
=
u
u
3
+ u
a
4
=
7
6
u
17
25
6
u
16
+ ··· +
23
3
u
17
3
5
3
u
17
+
11
3
u
16
+ ···
23
3
u +
11
3
a
1
=
19
6
u
17
37
6
u
16
+ ··· +
32
3
u
14
3
2
3
u
17
+
2
3
u
16
+ ··· +
1
3
u
1
3
a
6
=
7
6
u
17
+
25
6
u
16
+ ···
23
3
u +
17
3
2
3
u
17
2
3
u
16
+ ··· +
2
3
u +
1
3
a
10
=
u
3
u
5
u
3
+ u
a
3
=
5
2
u
17
+
7
2
u
16
+ ··· 7u + 1
3.33333u
17
+ 7.33333u
16
+ ··· 13.3333u + 6.33333
a
2
=
1.83333u
17
+ 3.83333u
16
+ ··· 8.33333u + 3.33333
2u
17
+ 5u
16
+ ··· 9u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
17
+ 14u
16
+ 12u
15
50u
14
2u
13
+ 94u
12
40u
11
130u
10
+ 112u
9
+ 86u
8
140u
7
22u
6
+ 106u
5
20u
4
36u
3
+ 24u
2
14u + 6
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
18
+ 7u
17
+ ··· 4u + 4
c
2
, c
5
, c
7
c
11
u
18
+ 3u
17
+ ··· + 6u + 2
c
3
, c
8
u
18
9u
17
+ ··· 16u + 8
c
4
, c
6
, c
9
c
12
u
18
+ 5u
16
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
18
+ 13y
17
+ ··· 272y + 16
c
2
, c
5
, c
7
c
11
y
18
7y
17
+ ··· + 4y + 4
c
3
, c
8
y
18
9y
17
+ ··· 480y + 64
c
4
, c
6
, c
9
c
12
y
18
+ 10y
17
+ ··· + y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.929188 + 0.427848I
a = 1.45891 + 0.96005I
b = 0.612958 + 0.694927I
2.52393 4.60971I 3.54545 + 10.13031I
u = 0.929188 0.427848I
a = 1.45891 0.96005I
b = 0.612958 0.694927I
2.52393 + 4.60971I 3.54545 10.13031I
u = 0.880851 + 0.560750I
a = 0.83772 + 1.88459I
b = 0.21871 + 1.48927I
1.22474 + 4.46780I 2.01264 5.91058I
u = 0.880851 0.560750I
a = 0.83772 1.88459I
b = 0.21871 1.48927I
1.22474 4.46780I 2.01264 + 5.91058I
u = 0.582973 + 0.940039I
a = 0.268767 0.004991I
b = 1.09278 1.05818I
5.24090 + 8.44951I 3.89928 4.02582I
u = 0.582973 0.940039I
a = 0.268767 + 0.004991I
b = 1.09278 + 1.05818I
5.24090 8.44951I 3.89928 + 4.02582I
u = 0.829747 + 0.331402I
a = 0.543141 1.062640I
b = 0.506778 + 0.049880I
1.42597 1.89978I 0.27303 + 2.78097I
u = 0.829747 0.331402I
a = 0.543141 + 1.062640I
b = 0.506778 0.049880I
1.42597 + 1.89978I 0.27303 2.78097I
u = 1.174310 + 0.030732I
a = 0.73424 + 1.60100I
b = 0.540765 + 1.144710I
8.44772 + 5.23335I 9.78688 5.32435I
u = 1.174310 0.030732I
a = 0.73424 1.60100I
b = 0.540765 1.144710I
8.44772 5.23335I 9.78688 + 5.32435I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.933002 + 0.761436I
a = 0.373106 0.772716I
b = 0.113921 0.679581I
4.32570 + 5.86053I 5.28493 4.51200I
u = 0.933002 0.761436I
a = 0.373106 + 0.772716I
b = 0.113921 + 0.679581I
4.32570 5.86053I 5.28493 + 4.51200I
u = 0.969925 + 0.853431I
a = 0.717351 + 0.406552I
b = 0.005204 + 1.085600I
1.61741 6.44223I 7.21121 + 5.93194I
u = 0.969925 0.853431I
a = 0.717351 0.406552I
b = 0.005204 1.085600I
1.61741 + 6.44223I 7.21121 5.93194I
u = 1.120310 + 0.718189I
a = 0.54198 1.83396I
b = 1.13133 1.27977I
1.8659 20.6729I 0.25702 + 11.54258I
u = 1.120310 0.718189I
a = 0.54198 + 1.83396I
b = 1.13133 + 1.27977I
1.8659 + 20.6729I 0.25702 11.54258I
u = 0.056018 + 0.547940I
a = 0.591992 0.492924I
b = 0.373557 + 0.433371I
0.572438 1.277810I 3.90202 + 5.68169I
u = 0.056018 0.547940I
a = 0.591992 + 0.492924I
b = 0.373557 0.433371I
0.572438 + 1.277810I 3.90202 5.68169I
6
II. I
u
2
= h2.93 × 10
19
u
49
3.08 × 10
20
u
48
+ · · · + 4.47 × 10
17
b 5.18 ×
10
20
, 2.95 × 10
19
u
49
+ 6.16 × 10
20
u
48
+ · · · + 5.81 × 10
18
a + 6.41 ×
10
21
, u
50
11u
49
+ · · · 165u + 13i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
5.08053u
49
106.085u
48
+ ··· + 11433.4u 1104.06
65.6329u
49
+ 690.174u
48
+ ··· 13362.0u + 1158.61
a
8
=
1
u
2
a
9
=
3.20250u
49
44.5872u
48
+ ··· + 545.377u 12.0177
22.0074u
49
+ 211.526u
48
+ ··· 924.850u + 52.1829
a
12
=
u
u
3
+ u
a
4
=
70.7134u
49
796.258u
48
+ ··· + 24795.5u 2262.67
65.6329u
49
+ 690.174u
48
+ ··· 13362.0u + 1158.61
a
1
=
6.69943u
49
28.5149u
48
+ ··· 5493.60u + 527.935
20.4159u
49
227.260u
48
+ ··· + 5735.08u 500.233
a
6
=
71.2237u
49
+ 730.489u
48
+ ··· 12363.3u + 1079.94
3.20274u
49
17.3842u
48
+ ··· 795.115u + 58.9383
a
10
=
u
3
u
5
u
3
+ u
a
3
=
7.76879u
49
154.326u
48
+ ··· + 14845.3u 1429.50
84.9603u
49
+ 868.882u
48
+ ··· 13592.6u + 1152.16
a
2
=
36.0253u
49
376.781u
48
+ ··· + 8948.18u 832.007
29.2879u
49
+ 282.012u
48
+ ··· 2240.06u + 176.845
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9871134219706577536
446874893374714199
u
49
123797457722876187653
446874893374714199
u
48
+ ··· +
6910675158351158980446
446874893374714199
u
601472827700807026450
446874893374714199
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
50
+ 19u
49
+ ··· + 5099u + 169
c
2
, c
5
, c
7
c
11
u
50
+ 11u
49
+ ··· + 165u + 13
c
3
, c
8
(u
25
+ 4u
24
+ ··· + 3u + 1)
2
c
4
, c
6
, c
9
c
12
u
50
+ 5u
49
+ ··· + 4u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
50
+ 13y
49
+ ··· 3709039y + 28561
c
2
, c
5
, c
7
c
11
y
50
19y
49
+ ··· 5099y + 169
c
3
, c
8
(y
25
8y
24
+ ··· + y 1)
2
c
4
, c
6
, c
9
c
12
y
50
+ 21y
49
+ ··· + 52y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.553707 + 0.832806I
a = 0.043757 0.161962I
b = 1.07602 + 1.01172I
2.22763 + 6.76528I 0. 5.55124I
u = 0.553707 0.832806I
a = 0.043757 + 0.161962I
b = 1.07602 1.01172I
2.22763 6.76528I 0. + 5.55124I
u = 0.837139 + 0.557385I
a = 0.79159 1.91622I
b = 0.14846 1.48629I
1.07852 0
u = 0.837139 0.557385I
a = 0.79159 + 1.91622I
b = 0.14846 + 1.48629I
1.07852 0
u = 0.558430 + 0.809571I
a = 0.1049370 0.0051426I
b = 0.475534 0.512990I
2.54415 3.36836I 0. + 11.53583I
u = 0.558430 0.809571I
a = 0.1049370 + 0.0051426I
b = 0.475534 + 0.512990I
2.54415 + 3.36836I 0. 11.53583I
u = 0.917168 + 0.480093I
a = 0.86443 + 1.71315I
b = 0.316452 + 1.330430I
2.28095 + 0.36934I 0
u = 0.917168 0.480093I
a = 0.86443 1.71315I
b = 0.316452 1.330430I
2.28095 0.36934I 0
u = 0.933200 + 0.451504I
a = 0.748966 0.796862I
b = 0.496615 0.374938I
1.46923 1.71043I 0
u = 0.933200 0.451504I
a = 0.748966 + 0.796862I
b = 0.496615 + 0.374938I
1.46923 + 1.71043I 0
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.855986 + 0.425974I
a = 0.52160 1.79372I
b = 0.054829 1.272590I
1.96570 + 3.34746I 0. 8.41971I
u = 0.855986 0.425974I
a = 0.52160 + 1.79372I
b = 0.054829 + 1.272590I
1.96570 3.34746I 0. + 8.41971I
u = 0.947983 + 0.107928I
a = 0.39264 2.05984I
b = 0.334947 1.326910I
2.54415 + 3.36836I 3.18716 11.53583I
u = 0.947983 0.107928I
a = 0.39264 + 2.05984I
b = 0.334947 + 1.326910I
2.54415 3.36836I 3.18716 + 11.53583I
u = 0.932177 + 0.127667I
a = 1.17876 2.00119I
b = 0.66990 1.34941I
4.36972 + 2.52616I 17.6949 8.8137I
u = 0.932177 0.127667I
a = 1.17876 + 2.00119I
b = 0.66990 + 1.34941I
4.36972 2.52616I 17.6949 + 8.8137I
u = 0.705776 + 0.790233I
a = 0.379152 + 0.570875I
b = 1.29001 1.06513I
3.42082 + 2.87486I 0
u = 0.705776 0.790233I
a = 0.379152 0.570875I
b = 1.29001 + 1.06513I
3.42082 2.87486I 0
u = 0.848218 + 0.375573I
a = 1.68167 + 0.17265I
b = 0.434516 + 0.694240I
2.28095 + 0.36934I 1.79998 + 1.57281I
u = 0.848218 0.375573I
a = 1.68167 0.17265I
b = 0.434516 0.694240I
2.28095 0.36934I 1.79998 1.57281I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.903202 + 0.595706I
a = 0.66474 1.60449I
b = 1.44211 0.54229I
1.79493 2.26748I 0
u = 0.903202 0.595706I
a = 0.66474 + 1.60449I
b = 1.44211 + 0.54229I
1.79493 + 2.26748I 0
u = 0.553438 + 0.956996I
a = 0.240338 + 0.074404I
b = 1.09277 + 1.06584I
3.6258 + 14.5513I 0
u = 0.553438 0.956996I
a = 0.240338 0.074404I
b = 1.09277 1.06584I
3.6258 14.5513I 0
u = 0.805706 + 0.801297I
a = 0.487390 + 0.656086I
b = 0.193006 + 0.633975I
4.71625 0
u = 0.805706 0.801297I
a = 0.487390 0.656086I
b = 0.193006 0.633975I
4.71625 0
u = 0.251795 + 1.124930I
a = 0.254137 + 0.049386I
b = 0.423621 + 0.366735I
3.42082 2.87486I 0
u = 0.251795 1.124930I
a = 0.254137 0.049386I
b = 0.423621 0.366735I
3.42082 + 2.87486I 0
u = 0.731346 + 0.379553I
a = 1.245790 + 0.394727I
b = 0.369373 0.633955I
1.96570 3.34746I 0. + 8.41971I
u = 0.731346 0.379553I
a = 1.245790 0.394727I
b = 0.369373 + 0.633955I
1.96570 + 3.34746I 0. 8.41971I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.370215 + 1.168900I
a = 0.223126 0.084389I
b = 0.462705 0.346414I
2.53033 8.55334I 0
u = 0.370215 1.168900I
a = 0.223126 + 0.084389I
b = 0.462705 + 0.346414I
2.53033 + 8.55334I 0
u = 0.997780 + 0.713374I
a = 0.85559 + 1.68166I
b = 1.31365 + 1.39313I
2.53033 8.55334I 0
u = 0.997780 0.713374I
a = 0.85559 1.68166I
b = 1.31365 1.39313I
2.53033 + 8.55334I 0
u = 1.249550 + 0.152177I
a = 0.58334 1.39167I
b = 0.482964 1.010150I
2.22763 + 6.76528I 0
u = 1.249550 0.152177I
a = 0.58334 + 1.39167I
b = 0.482964 + 1.010150I
2.22763 6.76528I 0
u = 0.948687 + 0.830787I
a = 0.602613 0.618497I
b = 0.388518 1.079670I
1.63367 0
u = 0.948687 0.830787I
a = 0.602613 + 0.618497I
b = 0.388518 + 1.079670I
1.63367 0
u = 1.072930 + 0.680011I
a = 0.71338 1.81412I
b = 1.16504 1.24505I
3.78504 12.42080I 0
u = 1.072930 0.680011I
a = 0.71338 + 1.81412I
b = 1.16504 + 1.24505I
3.78504 + 12.42080I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.296060 + 0.117362I
a = 0.67390 + 1.34621I
b = 0.541462 + 0.992346I
3.78504 + 12.42080I 0
u = 1.296060 0.117362I
a = 0.67390 1.34621I
b = 0.541462 0.992346I
3.78504 12.42080I 0
u = 1.102950 + 0.724130I
a = 0.56636 + 1.78230I
b = 1.13689 + 1.28166I
3.6258 14.5513I 0
u = 1.102950 0.724130I
a = 0.56636 1.78230I
b = 1.13689 1.28166I
3.6258 + 14.5513I 0
u = 1.304940 + 0.232629I
a = 0.177583 + 0.626392I
b = 0.065583 + 0.228032I
1.79493 + 2.26748I 0
u = 1.304940 0.232629I
a = 0.177583 0.626392I
b = 0.065583 0.228032I
1.79493 2.26748I 0
u = 1.166690 + 0.634912I
a = 0.454441 + 0.458068I
b = 0.102112 + 0.474616I
4.36972 2.52616I 0
u = 1.166690 0.634912I
a = 0.454441 0.458068I
b = 0.102112 0.474616I
4.36972 + 2.52616I 0
u = 0.338458 + 0.034083I
a = 0.59797 + 2.01326I
b = 0.210423 0.573227I
1.46923 + 1.71043I 1.72966 1.33913I
u = 0.338458 0.034083I
a = 0.59797 2.01326I
b = 0.210423 + 0.573227I
1.46923 1.71043I 1.72966 + 1.33913I
14
III. I
u
3
= h−u
5
a u
5
+ 2u
3
a + u
3
2au + b u + 1, 2u
4
a 3u
4
+ · · · + a
2
+
2, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
a
u
5
a + u
5
2u
3
a u
3
+ 2au + u 1
a
8
=
1
u
2
a
9
=
u
5
a u
5
2u
3
a + u
3
+ 2au + a u 1
u
5
a + u
5
2u
3
a u
3
+ 2au + u 1
a
12
=
u
u
3
+ u
a
4
=
u
5
a u
5
+ 2u
3
a + u
3
2au + a u + 1
u
5
a + u
5
2u
3
a u
3
+ 2au + u 1
a
1
=
u
5
a + u
3
a + 2u
4
+ u
3
au 2u
2
+ a 2u
1
a
6
=
u
5
a + u
5
2u
3
a + 2u
4
u
2
a + u
3
+ 2au 2u
2
+ a u 1
u
5
a u
5
+ 2u
3
a + u
2
a + 3u
3
2au 3u 1
a
10
=
u
3
u
5
u
3
+ u
a
3
=
u
5
a + u
3
a + u
3
au + a + 1
u
5
a u
4
a + u
5
+ u
3
a + 2u
2
a + u
2
a 1
a
2
=
2u
5
a u
4
a + u
5
+ 2u
3
a + 2u
4
+ 2u
2
a + u
3
au u
2
2u
2u
5
+ 2u
4
2u
3
+ au 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
4
8u
2
8u 2
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
c
2
, c
5
, c
7
c
11
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
3
, c
8
u
12
9u
11
+ ··· 104u + 17
c
4
, c
6
, c
9
c
12
u
12
+ u
11
+ 2u
10
2u
9
+ 3u
8
3u
7
+ 17u
6
9u
5
+ 19u
4
5u
3
+ 6u
2
+ 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
2
, c
5
, c
7
c
11
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
3
, c
8
y
12
+ 3y
11
+ ··· + 64y + 289
c
4
, c
6
, c
9
c
12
y
12
+ 3y
11
+ ··· + 12y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 1.72095 + 1.00813I
b = 0.51345 + 1.52069I
5.42615 1.84861I 13.43343 + 1.58845I
u = 1.002190 + 0.295542I
a = 0.39343 2.26995I
b = 0.085204 0.856161I
5.42615 1.84861I 13.43343 + 1.58845I
u = 1.002190 0.295542I
a = 1.72095 1.00813I
b = 0.51345 1.52069I
5.42615 + 1.84861I 13.43343 1.58845I
u = 1.002190 0.295542I
a = 0.39343 + 2.26995I
b = 0.085204 + 0.856161I
5.42615 + 1.84861I 13.43343 1.58845I
u = 0.428243 + 0.664531I
a = 1.071180 0.131182I
b = 0.170133 0.403810I
2.13628 1.84861I 1.43343 + 1.58845I
u = 0.428243 + 0.664531I
a = 0.275983 0.338083I
b = 1.172330 + 0.699352I
2.13628 1.84861I 1.43343 + 1.58845I
u = 0.428243 0.664531I
a = 1.071180 + 0.131182I
b = 0.170133 + 0.403810I
2.13628 + 1.84861I 1.43343 1.58845I
u = 0.428243 0.664531I
a = 0.275983 + 0.338083I
b = 1.172330 0.699352I
2.13628 + 1.84861I 1.43343 1.58845I
u = 1.073950 + 0.558752I
a = 1.34873 1.14126I
b = 0.344080 0.571978I
1.64493 + 11.38600I 6.00000 11.02114I
u = 1.073950 + 0.558752I
a = 0.11594 + 2.13765I
b = 1.41803 + 1.13073I
1.64493 + 11.38600I 6.00000 11.02114I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 1.34873 + 1.14126I
b = 0.344080 + 0.571978I
1.64493 11.38600I 6.00000 + 11.02114I
u = 1.073950 0.558752I
a = 0.11594 2.13765I
b = 1.41803 1.13073I
1.64493 11.38600I 6.00000 + 11.02114I
19
IV. I
u
4
= hu
5
u
3
+ b + u, u
3
+ a, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
u
3
u
5
+ u
3
u
a
8
=
1
u
2
a
9
=
u
5
+ 2u
3
u
u
5
u
3
+ u
a
12
=
u
u
3
+ u
a
4
=
u
5
2u
3
+ u
u
5
+ u
3
u
a
1
=
1
0
a
6
=
u
u
3
u
a
10
=
u
3
u
5
u
3
+ u
a
3
=
1
u
2
a
2
=
u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
4
8u
2
8u + 4
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
8
c
10
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
2
, c
7
u
6
+ u
5
u
4
2u
3
+ u + 1
c
4
, c
5
, c
6
c
9
, c
11
, c
12
u
6
u
5
u
4
+ 2u
3
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
8
c
10
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
2
, c
4
, c
5
c
6
, c
7
, c
9
c
11
, c
12
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.743983 0.864704I
b = 0.428243 0.664531I
3.78121 1.84861I 7.43343 + 1.58845I
u = 1.002190 0.295542I
a = 0.743983 + 0.864704I
b = 0.428243 + 0.664531I
3.78121 + 1.84861I 7.43343 1.58845I
u = 0.428243 + 0.664531I
a = 0.488802 0.072152I
b = 1.002190 0.295542I
3.78121 1.84861I 7.43343 + 1.58845I
u = 0.428243 0.664531I
a = 0.488802 + 0.072152I
b = 1.002190 + 0.295542I
3.78121 + 1.84861I 7.43343 1.58845I
u = 1.073950 + 0.558752I
a = 0.23279 1.75889I
b = 1.073950 0.558752I
11.3860I 0. 11.02114I
u = 1.073950 0.558752I
a = 0.23279 + 1.75889I
b = 1.073950 + 0.558752I
11.3860I 0. + 11.02114I
23
V. I
u
5
= h−2u
43
a 4u
42
a + · · · + 4b 65, 50u
43
a 95u
43
+ · · · 468a +
943, u
44
+ 3u
43
+ · · · 14u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
a
1
2
u
43
a + u
42
a + ··· + 163u +
65
4
a
8
=
1
u
2
a
9
=
7u
43
a +
7
8
u
43
+ ···
5
2
a
91
8
9
4
u
43
a +
9
4
u
42
a + ··· +
7
2
a 1
a
12
=
u
u
3
+ u
a
4
=
1
2
u
43
a u
42
a + ··· + a
65
4
1
2
u
43
a + u
42
a + ··· + 163u +
65
4
a
1
=
21
4
u
42
a + 2u
43
+ ···
65
4
a +
23
2
1
a
6
=
49
2
u
43
a + 2u
43
+ ···
139
4
a +
21
2
5
2
u
43
a
1
8
u
43
+ ··· +
1
4
a
7
8
a
10
=
u
3
u
5
u
3
+ u
a
3
=
9
2
u
43
19
4
u
42
+ ··· + a
41
4
1
2
u
43
a 6u
43
+ ··· + 226u +
83
4
a
2
=
95
4
u
43
a +
13
8
u
43
+ ··· + 29a +
79
8
7
4
u
43
a +
11
8
u
43
+ ···
5
2
a
11
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
97
4
u
43
54u
42
+ ··· +
1089
4
u +
51
4
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
44
+ 19u
43
+ ··· + 70u + 1)
2
c
2
, c
5
, c
7
c
11
(u
44
3u
43
+ ··· + 14u 1)
2
c
3
, c
8
(u
44
+ u
43
+ ··· + 840u + 271)
2
c
4
, c
6
, c
9
c
12
u
88
+ 11u
87
+ ··· + 20u + 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
44
+ 17y
43
+ ··· 3330y + 1)
2
c
2
, c
5
, c
7
c
11
(y
44
19y
43
+ ··· 70y + 1)
2
c
3
, c
8
(y
44
7y
43
+ ··· 1090962y + 73441)
2
c
4
, c
6
, c
9
c
12
y
88
39y
87
+ ··· 250y + 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.767481 + 0.649572I
a = 0.209749 + 0.455086I
b = 1.050190 + 0.737585I
3.61742 + 6.06223I 4.09868 3.56729I
u = 0.767481 + 0.649572I
a = 0.69676 2.08757I
b = 1.35788 1.16717I
3.61742 + 6.06223I 4.09868 3.56729I
u = 0.767481 0.649572I
a = 0.209749 0.455086I
b = 1.050190 0.737585I
3.61742 6.06223I 4.09868 + 3.56729I
u = 0.767481 0.649572I
a = 0.69676 + 2.08757I
b = 1.35788 + 1.16717I
3.61742 6.06223I 4.09868 + 3.56729I
u = 0.803659 + 0.647731I
a = 0.091655 0.132248I
b = 1.193190 0.680438I
5.35656 + 0.02685I 6.61609 + 1.70053I
u = 0.803659 + 0.647731I
a = 0.66010 + 2.10096I
b = 1.33111 + 1.04031I
5.35656 + 0.02685I 6.61609 + 1.70053I
u = 0.803659 0.647731I
a = 0.091655 + 0.132248I
b = 1.193190 + 0.680438I
5.35656 0.02685I 6.61609 1.70053I
u = 0.803659 0.647731I
a = 0.66010 2.10096I
b = 1.33111 1.04031I
5.35656 0.02685I 6.61609 1.70053I
u = 0.851089 + 0.590714I
a = 0.07497 1.50979I
b = 1.84927 0.00718I
1.70735 2.34151I 6.14112 + 4.86696I
u = 0.851089 + 0.590714I
a = 0.93452 1.56224I
b = 1.150410 0.258778I
1.70735 2.34151I 6.14112 + 4.86696I
27
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.851089 0.590714I
a = 0.07497 + 1.50979I
b = 1.84927 + 0.00718I
1.70735 + 2.34151I 6.14112 4.86696I
u = 0.851089 0.590714I
a = 0.93452 + 1.56224I
b = 1.150410 + 0.258778I
1.70735 + 2.34151I 6.14112 4.86696I
u = 0.473872 + 0.833820I
a = 0.325630 0.110420I
b = 0.598560 0.485867I
2.48681 1.78904I 1.77660 + 1.34347I
u = 0.473872 + 0.833820I
a = 0.181027 0.089265I
b = 1.054730 + 0.566967I
2.48681 1.78904I 1.77660 + 1.34347I
u = 0.473872 0.833820I
a = 0.325630 + 0.110420I
b = 0.598560 + 0.485867I
2.48681 + 1.78904I 1.77660 1.34347I
u = 0.473872 0.833820I
a = 0.181027 + 0.089265I
b = 1.054730 0.566967I
2.48681 + 1.78904I 1.77660 1.34347I
u = 0.503143 + 0.946145I
a = 0.120712 0.412859I
b = 0.808803 0.791262I
5.08140 5.03772I 5.56121 + 5.67665I
u = 0.503143 + 0.946145I
a = 0.128920 0.292183I
b = 1.123420 + 0.229540I
5.08140 5.03772I 5.56121 + 5.67665I
u = 0.503143 0.946145I
a = 0.120712 + 0.412859I
b = 0.808803 + 0.791262I
5.08140 + 5.03772I 5.56121 5.67665I
u = 0.503143 0.946145I
a = 0.128920 + 0.292183I
b = 1.123420 0.229540I
5.08140 + 5.03772I 5.56121 5.67665I
28
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.542619 + 0.934381I
a = 0.217567 + 0.342060I
b = 0.878871 + 0.768623I
5.35656 0.02685I 6.61609 1.70053I
u = 0.542619 + 0.934381I
a = 0.055966 + 0.360352I
b = 1.039850 0.142869I
5.35656 0.02685I 6.61609 1.70053I
u = 0.542619 0.934381I
a = 0.217567 0.342060I
b = 0.878871 0.768623I
5.35656 + 0.02685I 6.61609 + 1.70053I
u = 0.542619 0.934381I
a = 0.055966 0.360352I
b = 1.039850 + 0.142869I
5.35656 + 0.02685I 6.61609 + 1.70053I
u = 0.892273 + 0.637275I
a = 0.798485 + 0.407722I
b = 1.70312 0.82985I
5.08140 5.03772I 5.56121 + 5.67665I
u = 0.892273 + 0.637275I
a = 0.79044 + 2.21552I
b = 0.931912 + 0.821648I
5.08140 5.03772I 5.56121 + 5.67665I
u = 0.892273 0.637275I
a = 0.798485 0.407722I
b = 1.70312 + 0.82985I
5.08140 + 5.03772I 5.56121 5.67665I
u = 0.892273 0.637275I
a = 0.79044 2.21552I
b = 0.931912 0.821648I
5.08140 + 5.03772I 5.56121 5.67665I
u = 0.802626 + 0.757447I
a = 0.492685 + 1.009980I
b = 0.379182 + 0.670238I
4.62114 5.54727 + 0.I
u = 0.802626 + 0.757447I
a = 0.458276 + 0.324516I
b = 0.733776 + 0.580087I
4.62114 5.54727 + 0.I
29
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.802626 0.757447I
a = 0.492685 1.009980I
b = 0.379182 0.670238I
4.62114 5.54727 + 0.I
u = 0.802626 0.757447I
a = 0.458276 0.324516I
b = 0.733776 0.580087I
4.62114 5.54727 + 0.I
u = 0.918693 + 0.631895I
a = 1.086560 0.368999I
b = 1.77703 + 0.97307I
3.15038 11.06350I 2.31684 + 10.51224I
u = 0.918693 + 0.631895I
a = 0.79220 2.32690I
b = 0.801722 0.841787I
3.15038 11.06350I 2.31684 + 10.51224I
u = 0.918693 0.631895I
a = 1.086560 + 0.368999I
b = 1.77703 0.97307I
3.15038 + 11.06350I 2.31684 10.51224I
u = 0.918693 0.631895I
a = 0.79220 + 2.32690I
b = 0.801722 + 0.841787I
3.15038 + 11.06350I 2.31684 10.51224I
u = 1.11703
a = 0.559527 + 1.206560I
b = 0.064688 + 0.847977I
3.19687 5.88290
u = 1.11703
a = 0.559527 1.206560I
b = 0.064688 0.847977I
3.19687 5.88290
u = 0.972088 + 0.562819I
a = 1.63782 0.13643I
b = 0.300509 0.254450I
3.73793 + 3.81466I 6.30765 8.57961I
u = 0.972088 + 0.562819I
a = 0.71054 + 2.33938I
b = 1.35813 + 1.69326I
3.73793 + 3.81466I 6.30765 8.57961I
30
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.972088 0.562819I
a = 1.63782 + 0.13643I
b = 0.300509 + 0.254450I
3.73793 3.81466I 6.30765 + 8.57961I
u = 0.972088 0.562819I
a = 0.71054 2.33938I
b = 1.35813 1.69326I
3.73793 3.81466I 6.30765 + 8.57961I
u = 0.714060 + 0.501949I
a = 1.34919 + 0.68585I
b = 1.59813 1.14955I
2.85723 + 0.57531I 2.18655 + 5.07930I
u = 0.714060 + 0.501949I
a = 1.59862 1.48482I
b = 0.0868291 0.0247619I
2.85723 + 0.57531I 2.18655 + 5.07930I
u = 0.714060 0.501949I
a = 1.34919 0.68585I
b = 1.59813 + 1.14955I
2.85723 0.57531I 2.18655 5.07930I
u = 0.714060 0.501949I
a = 1.59862 + 1.48482I
b = 0.0868291 + 0.0247619I
2.85723 0.57531I 2.18655 5.07930I
u = 1.182370 + 0.249072I
a = 1.33410 + 0.52761I
b = 0.716253 + 0.936843I
3.73793 + 3.81466I 6.30765 8.57961I
u = 1.182370 + 0.249072I
a = 0.04691 1.87311I
b = 0.139509 0.906647I
3.73793 + 3.81466I 6.30765 8.57961I
u = 1.182370 0.249072I
a = 1.33410 0.52761I
b = 0.716253 0.936843I
3.73793 3.81466I 6.30765 + 8.57961I
u = 1.182370 0.249072I
a = 0.04691 + 1.87311I
b = 0.139509 + 0.906647I
3.73793 3.81466I 6.30765 + 8.57961I
31
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.044760 + 0.613681I
a = 0.947346 + 0.792517I
b = 0.530131 + 0.447375I
0.48539 + 6.82448I 0. 6.22925I
u = 1.044760 + 0.613681I
a = 0.34576 1.93178I
b = 1.17630 1.20444I
0.48539 + 6.82448I 0. 6.22925I
u = 1.044760 0.613681I
a = 0.947346 0.792517I
b = 0.530131 0.447375I
0.48539 6.82448I 0. + 6.22925I
u = 1.044760 0.613681I
a = 0.34576 + 1.93178I
b = 1.17630 + 1.20444I
0.48539 6.82448I 0. + 6.22925I
u = 1.215330 + 0.165372I
a = 1.025870 0.466462I
b = 0.541188 0.729277I
2.85723 0.57531I 0
u = 1.215330 + 0.165372I
a = 0.04140 + 1.59807I
b = 0.156527 + 0.829153I
2.85723 0.57531I 0
u = 1.215330 0.165372I
a = 1.025870 + 0.466462I
b = 0.541188 + 0.729277I
2.85723 + 0.57531I 0
u = 1.215330 0.165372I
a = 0.04140 1.59807I
b = 0.156527 0.829153I
2.85723 + 0.57531I 0
u = 0.695081 + 0.217967I
a = 0.305437 + 1.080750I
b = 1.56163 0.21982I
0.57189 7.31268I 5.07151 + 6.33709I
u = 0.695081 + 0.217967I
a = 3.07338 0.83141I
b = 0.347865 0.007131I
0.57189 7.31268I 5.07151 + 6.33709I
32
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.695081 0.217967I
a = 0.305437 1.080750I
b = 1.56163 + 0.21982I
0.57189 + 7.31268I 5.07151 6.33709I
u = 0.695081 0.217967I
a = 3.07338 + 0.83141I
b = 0.347865 + 0.007131I
0.57189 + 7.31268I 5.07151 6.33709I
u = 1.109330 + 0.644832I
a = 0.65014 + 1.36464I
b = 0.683547 + 0.755743I
0.57189 + 7.31268I 0
u = 1.109330 + 0.644832I
a = 0.09902 1.63155I
b = 1.15242 0.87299I
0.57189 + 7.31268I 0
u = 1.109330 0.644832I
a = 0.65014 1.36464I
b = 0.683547 0.755743I
0.57189 7.31268I 0
u = 1.109330 0.644832I
a = 0.09902 + 1.63155I
b = 1.15242 + 0.87299I
0.57189 7.31268I 0
u = 1.318490 + 0.024433I
a = 0.150294 + 0.994451I
b = 0.127511 + 0.470493I
1.70735 + 2.34151I 0
u = 1.318490 + 0.024433I
a = 0.274504 + 0.224235I
b = 0.188454 0.112226I
1.70735 + 2.34151I 0
u = 1.318490 0.024433I
a = 0.150294 0.994451I
b = 0.127511 0.470493I
1.70735 2.34151I 0
u = 1.318490 0.024433I
a = 0.274504 0.224235I
b = 0.188454 + 0.112226I
1.70735 2.34151I 0
33
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.110670 + 0.713391I
a = 0.113297 + 1.048100I
b = 1.135860 + 0.456326I
3.61742 + 6.06223I 0
u = 1.110670 + 0.713391I
a = 0.44380 1.68331I
b = 0.806935 1.052440I
3.61742 + 6.06223I 0
u = 1.110670 0.713391I
a = 0.113297 1.048100I
b = 1.135860 0.456326I
3.61742 6.06223I 0
u = 1.110670 0.713391I
a = 0.44380 + 1.68331I
b = 0.806935 + 1.052440I
3.61742 6.06223I 0
u = 0.235182 + 0.635023I
a = 1.24503 + 0.86650I
b = 0.016785 + 0.660631I
0.48539 6.82448I 1.22382 + 6.22925I
u = 0.235182 + 0.635023I
a = 0.118272 + 0.377558I
b = 1.207550 0.716047I
0.48539 6.82448I 1.22382 + 6.22925I
u = 0.235182 0.635023I
a = 1.24503 0.86650I
b = 0.016785 0.660631I
0.48539 + 6.82448I 1.22382 6.22925I
u = 0.235182 0.635023I
a = 0.118272 0.377558I
b = 1.207550 + 0.716047I
0.48539 + 6.82448I 1.22382 6.22925I
u = 1.133930 + 0.701691I
a = 0.187501 1.213320I
b = 1.214170 0.539939I
3.15038 + 11.06350I 0
u = 1.133930 + 0.701691I
a = 0.50414 + 1.69437I
b = 0.748726 + 1.033840I
3.15038 + 11.06350I 0
34
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.133930 0.701691I
a = 0.187501 + 1.213320I
b = 1.214170 + 0.539939I
3.15038 11.06350I 0
u = 1.133930 0.701691I
a = 0.50414 1.69437I
b = 0.748726 1.033840I
3.15038 11.06350I 0
u = 0.604720 + 0.161152I
a = 0.485397 0.758391I
b = 1.382110 + 0.218862I
2.48681 1.78904I 1.77660 + 1.34347I
u = 0.604720 + 0.161152I
a = 3.01193 + 0.44916I
b = 0.403113 0.055546I
2.48681 1.78904I 1.77660 + 1.34347I
u = 0.604720 0.161152I
a = 0.485397 + 0.758391I
b = 1.382110 0.218862I
2.48681 + 1.78904I 1.77660 1.34347I
u = 0.604720 0.161152I
a = 3.01193 0.44916I
b = 0.403113 + 0.055546I
2.48681 + 1.78904I 1.77660 1.34347I
u = 0.131617
a = 5.64036 + 4.49230I
b = 0.731173 0.579698I
3.19687 5.88290
u = 0.131617
a = 5.64036 4.49230I
b = 0.731173 + 0.579698I
3.19687 5.88290
35
VI. I
u
6
=
h3u
15
+5u
14
+· · ·+b1, 7u
15
28u
14
+· · ·+2a22, u
16
+4u
15
+· · ·+8u+2i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
7
2
u
15
+ 14u
14
+ ··· +
59
2
u + 11
3u
15
5u
14
+ ··· + u + 1
a
8
=
1
u
2
a
9
=
11
2
u
15
17u
14
+ ···
67
2
u 8
u
15
+ 3u
14
+ ··· + 7u + 1
a
12
=
u
u
3
+ u
a
4
=
13
2
u
15
+ 19u
14
+ ··· +
57
2
u + 10
3u
15
5u
14
+ ··· + u + 1
a
1
=
13
2
u
15
20u
14
+ ···
67
2
u 11
4u
15
+ 9u
14
+ ··· + 7u + 1
a
6
=
17
2
u
15
+ 30u
14
+ ··· +
143
2
u + 24
4u
15
13u
14
+ ··· 30u 9
a
10
=
u
3
u
5
u
3
+ u
a
3
=
3
2
u
15
+ 4u
14
+ ··· +
5
2
u + 2
4u
15
11u
14
+ ··· 18u 5
a
2
=
13
2
u
15
+ 26u
14
+ ··· +
139
2
u + 25
7u
15
21u
14
+ ··· 41u 11
(ii) Obstruction class = 1
(iii) Cusp Shapes = 38u
15
69u
14
+ 46u
13
+ 251u
12
+ 175u
11
71u
10
114u
9
26u
8
246u
7
430u
6
310u
5
60u
4
64u
3
35u
2
+ 26u + 42
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
16
6u
15
+ ··· + 4u + 4
c
2
, c
7
u
16
+ 4u
15
+ ··· + 8u + 2
c
3
, c
8
(u
8
+ 2u
7
+ 2u
6
+ u
2
+ u + 1)
2
c
4
, c
6
, c
9
c
12
u
16
6u
14
+ ··· u
2
+ 1
c
5
, c
11
u
16
4u
15
+ ··· 8u + 2
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
16
+ 2y
15
+ ··· + 152y + 16
c
2
, c
5
, c
7
c
11
y
16
6y
15
+ ··· + 4y + 4
c
3
, c
8
(y
8
+ 4y
6
+ 2y
5
+ 2y
4
+ 4y
3
+ y
2
+ y + 1)
2
c
4
, c
6
, c
9
c
12
y
16
12y
15
+ ··· 2y + 1
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.484640 + 0.846797I
a = 0.680045 + 0.269791I
b = 0.618812 0.101203I
2.47558 7.94608I 0.92481 + 5.79314I
u = 0.484640 0.846797I
a = 0.680045 0.269791I
b = 0.618812 + 0.101203I
2.47558 + 7.94608I 0.92481 5.79314I
u = 0.620876 + 0.837136I
a = 0.129335 + 0.230266I
b = 0.980946 0.677334I
3.68697 2.14875I 5.80448 + 2.27366I
u = 0.620876 0.837136I
a = 0.129335 0.230266I
b = 0.980946 + 0.677334I
3.68697 + 2.14875I 5.80448 2.27366I
u = 0.868732 + 0.620313I
a = 0.43706 1.78935I
b = 1.81641 0.27594I
2.07294 + 2.43245I 21.6315 8.0683I
u = 0.868732 0.620313I
a = 0.43706 + 1.78935I
b = 1.81641 + 0.27594I
2.07294 2.43245I 21.6315 + 8.0683I
u = 0.597300 + 0.462977I
a = 1.26482 0.64500I
b = 1.184110 + 0.133480I
1.66766 7.05131I 3.40216 + 4.97138I
u = 0.597300 0.462977I
a = 1.26482 + 0.64500I
b = 1.184110 0.133480I
1.66766 + 7.05131I 3.40216 4.97138I
u = 1.034390 + 0.719349I
a = 0.62644 + 1.38546I
b = 0.99042 + 1.11066I
2.47558 + 7.94608I 0.92481 5.79314I
u = 1.034390 0.719349I
a = 0.62644 1.38546I
b = 0.99042 1.11066I
2.47558 7.94608I 0.92481 + 5.79314I
39
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.125140 + 0.624650I
a = 0.20300 + 1.50281I
b = 0.927126 + 0.676564I
1.66766 + 7.05131I 3.40216 4.97138I
u = 1.125140 0.624650I
a = 0.20300 1.50281I
b = 0.927126 0.676564I
1.66766 7.05131I 3.40216 + 4.97138I
u = 0.270172 + 0.658282I
a = 0.744963 0.703702I
b = 0.764226 + 0.048273I
3.68697 2.14875I 5.80448 + 2.27366I
u = 0.270172 0.658282I
a = 0.744963 + 0.703702I
b = 0.764226 0.048273I
3.68697 + 2.14875I 5.80448 2.27366I
u = 1.49163 + 0.08776I
a = 0.066697 0.588457I
b = 0.043384 0.465221I
2.07294 + 2.43245I 21.6315 8.0683I
u = 1.49163 0.08776I
a = 0.066697 + 0.588457I
b = 0.043384 + 0.465221I
2.07294 2.43245I 21.6315 + 8.0683I
40
VII. I
u
7
= h−u
2
a + b 1, a
2
+ 2au + 2u
2
+ a + 3u + 2, u
3
+ u
2
1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
a
u
2
a + 1
a
8
=
1
u
2
a
9
=
a + 1
u
2
a + u
2
1
a
12
=
u
u
2
+ u 1
a
4
=
u
2
a + a 1
u
2
a + 1
a
1
=
a 2u 1
1
a
6
=
u
2
a a 2u 1
u
2
a au u
2
+ a 1
a
10
=
u
2
+ 1
u
2
a
3
=
u
2
a + u
2
+ a 2
u
2
a u
2
+ 1
a
2
=
au u
2
u 2
u
2
a + au a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 2
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
3
+ u
2
+ 2u + 1)
2
c
2
, c
5
, c
7
c
11
(u
3
u
2
+ 1)
2
c
3
, c
8
(u + 1)
6
c
4
, c
6
, c
9
c
12
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
, c
7
c
11
(y
3
y
2
+ 2y 1)
2
c
3
, c
8
(y 1)
6
c
4
, c
6
, c
9
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.562133 1.239140I
b = 0.498832 1.001300I
4.40332 + 5.65624I 5.01951 5.95889I
u = 0.877439 + 0.744862I
a = 0.192744 0.250580I
b = 0.713912 0.305839I
4.40332 + 5.65624I 5.01951 5.95889I
u = 0.877439 0.744862I
a = 0.562133 + 1.239140I
b = 0.498832 + 1.001300I
4.40332 5.65624I 5.01951 + 5.95889I
u = 0.877439 0.744862I
a = 0.192744 + 0.250580I
b = 0.713912 + 0.305839I
4.40332 5.65624I 5.01951 + 5.95889I
u = 0.754878
a = 1.25488 + 1.95694I
b = 0.284920 + 1.115140I
3.87184 8.03900
u = 0.754878
a = 1.25488 1.95694I
b = 0.284920 1.115140I
3.87184 8.03900
44
VIII. I
u
8
=
h−u
3
au
2
au
3
+au+2b+1, u
2
a+u
3
+a
2
+au2u
2
+au+2, u
4
u
2
+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
a
1
2
u
3
a +
1
2
u
3
+ ···
1
2
au
1
2
a
8
=
1
u
2
a
9
=
1
2
u
3
a + u
3
+ ···
1
2
a +
1
2
u
3
a
12
=
u
u
3
+ u
a
4
=
1
2
u
3
a
1
2
u
3
+ ··· + a +
1
2
1
2
u
3
a +
1
2
u
3
+ ···
1
2
au
1
2
a
1
=
1
2
u
3
a
1
2
u
2
+ ···
1
2
a +
1
2
1
a
6
=
1
2
u
3
a +
1
2
u
2
+ ··· +
1
2
a
1
2
1
a
10
=
u
3
0
a
3
=
a
1
2
u
3
a +
1
2
u
3
+ ···
1
2
au
1
2
a
2
=
1
2
u
3
a
1
2
u
2
+ ··· +
1
2
a +
1
2
1
2
u
3
a +
1
2
u
3
+ ···
1
2
au +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8
45
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
8
u
8
2u
6
+ 2u
5
+ 2u
4
2u
3
+ 3u
2
+ 4u + 1
c
4
, c
12
u
8
4u
7
+ 10u
6
16u
5
+ 18u
4
14u
3
+ 7u
2
2u + 1
c
5
(u + 1)
8
c
6
, c
9
(u
2
+ 1)
4
c
7
, c
11
(u
4
u
2
+ 1)
2
c
10
(u
2
u + 1)
4
46
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
8
c
3
, c
8
y
8
4y
7
+ 8y
6
6y
5
+ 2y
4
12y
3
+ 29y
2
10y + 1
c
4
, c
12
y
8
+ 4y
7
+ 8y
6
+ 6y
5
+ 2y
4
+ 12y
3
+ 29y
2
+ 10y + 1
c
6
, c
9
(y + 1)
8
c
7
, c
11
(y
2
y + 1)
4
c
10
(y
2
+ y + 1)
4
47
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.131115 + 0.786143I
b = 1.060940 + 0.445679I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 1.49714 0.42012I
b = 0.060942 0.445679I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.131115 0.786143I
b = 1.060940 0.445679I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.866025 0.500000I
a = 1.49714 + 0.42012I
b = 0.060942 + 0.445679I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.866025 + 0.500000I
a = 0.553254 + 1.002550I
b = 0.69440 + 1.28601I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.866025 + 0.500000I
a = 0.91928 2.36858I
b = 0.305600 1.286010I
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.866025 0.500000I
a = 0.553254 1.002550I
b = 0.69440 1.28601I
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.91928 + 2.36858I
b = 0.305600 + 1.286010I
3.28987 2.02988I 6.00000 + 3.46410I
48
IX. I
u
9
= h7.93 × 10
6
b 7.18 × 10
4
a
7
+ · · · 9.81 × 10
6
a + 3.14 × 10
6
, a
8
+
6a
6
+ · · · 60a + 73, u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
1
a
5
=
a
0.00904756a
7
+ 0.00216843a
6
+ ··· + 1.23707a 0.396120
a
8
=
1
1
a
9
=
0.00216843a
7
0.00652609a
6
+ ··· 0.146733a + 1.66047
0.00216843a
7
+ 0.00652609a
6
+ ··· + 0.146733a + 1.33953
a
12
=
1
0
a
4
=
0.00904756a
7
0.00216843a
6
+ ··· 0.237070a + 0.396120
0.00904756a
7
+ 0.00216843a
6
+ ··· + 1.23707a 0.396120
a
1
=
0.00216843a
7
+ 0.00652609a
6
+ ··· + 0.146733a 0.660472
1
a
6
=
0.000900759a
7
+ 0.0124795a
6
+ ··· + 0.0865369a + 3.18407
0.00867371a
7
+ 0.0261044a
6
+ ··· + 0.586933a + 1.35811
a
10
=
1
1
a
3
=
0.0271427a
7
0.00650529a
6
+ ··· 1.71121a + 1.18836
0.00904756a
7
0.00216843a
6
+ ··· 0.237070a + 0.396120
a
2
=
0.0242196a
7
0.0533541a
6
+ ··· 1.58772a 0.706203
0.00994138a
7
0.0201510a
6
+ ··· 0.647129a 0.513573
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
864
10477
a
7
144
10477
a
6
5208
10477
a
5
+
4316
10477
a
4
14760
10477
a
3
+
13092
10477
a
2
52032
10477
a
40648
10477
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
c
2
, c
5
(u
4
u
2
+ 1)
2
c
3
, c
8
u
8
2u
6
+ 2u
5
+ 2u
4
2u
3
+ 3u
2
+ 4u + 1
c
4
, c
12
(u
2
+ 1)
4
c
6
, c
9
u
8
4u
7
+ 10u
6
16u
5
+ 18u
4
14u
3
+ 7u
2
2u + 1
c
7
, c
10
(u 1)
8
c
11
(u + 1)
8
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
c
2
, c
5
(y
2
y + 1)
4
c
3
, c
8
y
8
4y
7
+ 8y
6
6y
5
+ 2y
4
12y
3
+ 29y
2
10y + 1
c
4
, c
12
(y + 1)
8
c
6
, c
9
y
8
+ 4y
7
+ 8y
6
+ 6y
5
+ 2y
4
+ 12y
3
+ 29y
2
+ 10y + 1
c
7
, c
10
, c
11
(y 1)
8
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.445679 + 0.939058I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.445679 0.939058I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 1.28601 + 1.30560I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 1.28601 1.30560I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.44568 + 2.06094I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.44568 2.06094I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 1.28601 + 1.69440I
b = 1.000000I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 1.28601 1.69440I
b = 1.000000I
3.28987 + 2.02988I 6.00000 3.46410I
52
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u 1)
8
(u
2
u + 1)
4
(u
3
+ u
2
+ 2u + 1)
2
· (u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· ((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
)(u
16
6u
15
+ ··· + 4u + 4)
· (u
18
+ 7u
17
+ ··· 4u + 4)(u
44
+ 19u
43
+ ··· + 70u + 1)
2
· (u
50
+ 19u
49
+ ··· + 5099u + 169)
c
2
, c
7
(u 1)
8
(u
3
u
2
+ 1)
2
(u
4
u
2
+ 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
· (u
6
+ u
5
u
4
2u
3
+ u + 1)(u
16
+ 4u
15
+ ··· + 8u + 2)
· (u
18
+ 3u
17
+ ··· + 6u + 2)(u
44
3u
43
+ ··· + 14u 1)
2
· (u
50
+ 11u
49
+ ··· + 165u + 13)
c
3
, c
8
(u + 1)
6
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
8
2u
6
+ 2u
5
+ 2u
4
2u
3
+ 3u
2
+ 4u + 1)
2
· ((u
8
+ 2u
7
+ 2u
6
+ u
2
+ u + 1)
2
)(u
12
9u
11
+ ··· 104u + 17)
· (u
18
9u
17
+ ··· 16u + 8)(u
25
+ 4u
24
+ ··· + 3u + 1)
2
· (u
44
+ u
43
+ ··· + 840u + 271)
2
c
4
, c
6
, c
9
c
12
((u
2
+ 1)
4
)(u
6
u
5
+ ··· u + 1)(u
6
+ u
5
+ ··· + 2u + 1)
· (u
8
4u
7
+ 10u
6
16u
5
+ 18u
4
14u
3
+ 7u
2
2u + 1)
· (u
12
+ u
11
+ 2u
10
2u
9
+ 3u
8
3u
7
+ 17u
6
9u
5
+ 19u
4
5u
3
+ 6u
2
+ 1)
· (u
16
6u
14
+ ··· u
2
+ 1)(u
18
+ 5u
16
+ ··· + u + 1)
· (u
50
+ 5u
49
+ ··· + 4u + 1)(u
88
+ 11u
87
+ ··· + 20u + 1)
c
5
, c
11
(u + 1)
8
(u
3
u
2
+ 1)
2
(u
4
u
2
+ 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
16
4u
15
+ ··· 8u + 2)(u
18
+ 3u
17
+ ··· + 6u + 2)
· ((u
44
3u
43
+ ··· + 14u 1)
2
)(u
50
+ 11u
49
+ ··· + 165u + 13)
53
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y 1)
8
(y
2
+ y + 1)
4
(y
3
+ 3y
2
+ 2y 1)
2
· ((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
)(y
16
+ 2y
15
+ ··· + 152y + 16)
· (y
18
+ 13y
17
+ ··· 272y + 16)(y
44
+ 17y
43
+ ··· 3330y + 1)
2
· (y
50
+ 13y
49
+ ··· 3709039y + 28561)
c
2
, c
5
, c
7
c
11
(y 1)
8
(y
2
y + 1)
4
(y
3
y
2
+ 2y 1)
2
· ((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
)(y
16
6y
15
+ ··· + 4y + 4)
· (y
18
7y
17
+ ··· + 4y + 4)(y
44
19y
43
+ ··· 70y + 1)
2
· (y
50
19y
49
+ ··· 5099y + 169)
c
3
, c
8
(y 1)
6
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
8
+ 4y
6
+ 2y
5
+ 2y
4
+ 4y
3
+ y
2
+ y + 1)
2
· (y
8
4y
7
+ 8y
6
6y
5
+ 2y
4
12y
3
+ 29y
2
10y + 1)
2
· (y
12
+ 3y
11
+ ··· + 64y + 289)(y
18
9y
17
+ ··· 480y + 64)
· (y
25
8y
24
+ ··· + y 1)
2
· (y
44
7y
43
+ ··· 1090962y + 73441)
2
c
4
, c
6
, c
9
c
12
((y + 1)
8
)(y
6
3y
5
+ ··· y + 1)(y
6
+ 3y
5
+ ··· + 2y
3
+ 1)
· (y
8
+ 4y
7
+ 8y
6
+ 6y
5
+ 2y
4
+ 12y
3
+ 29y
2
+ 10y + 1)
· (y
12
+ 3y
11
+ ··· + 12y + 1)(y
16
12y
15
+ ··· 2y + 1)
· (y
18
+ 10y
17
+ ··· + y + 1)(y
50
+ 21y
49
+ ··· + 52y + 1)
· (y
88
39y
87
+ ··· 250y + 1)
54