10
38
(K10a
29
)
A knot diagram
1
Linearized knot diagam
8 6 5 9 3 10 1 7 4 2
Solving Sequence
5,9
4 10 3 6 7 2 8 1
c
4
c
9
c
3
c
5
c
6
c
2
c
8
c
1
c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
29
u
28
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
29
u
28
+ · · · + u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
2
a
6
=
u
4
+ u
2
+ 1
u
4
a
7
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
10
+ 2u
8
+ 3u
6
+ 4u
4
+ u
2
a
2
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
8
=
u
17
+ 2u
15
+ 7u
13
+ 10u
11
+ 15u
9
+ 14u
7
+ 10u
5
+ 4u
3
+ u
u
19
+ 3u
17
+ 8u
15
+ 15u
13
+ 19u
11
+ 21u
9
+ 14u
7
+ 6u
5
+ u
3
+ u
a
1
=
u
15
2u
13
6u
11
8u
9
10u
7
8u
5
4u
3
u
15
u
13
4u
11
3u
9
4u
7
2u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
28
12u
26
4u
25
48u
24
12u
23
100u
22
44u
21
208u
20
92u
19
312u
18
172u
17
424u
16
252u
15
456u
14
296u
13
432u
12
288u
11
328u
10
216u
9
216u
8
128u
7
120u
6
56u
5
48u
4
32u
3
16u
2
12u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
29
+ u
28
+ ··· + 3u + 1
c
2
, c
3
, c
5
u
29
+ 7u
28
+ ··· u 1
c
4
, c
9
u
29
u
28
+ ··· + u + 1
c
6
u
29
u
28
+ ··· + 15u + 25
c
8
, c
10
u
29
+ 9u
28
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
29
9y
28
+ ··· y 1
c
2
, c
3
, c
5
y
29
+ 31y
28
+ ··· + 15y 1
c
4
, c
9
y
29
+ 7y
28
+ ··· y 1
c
6
y
29
+ 11y
28
+ ··· 2925y 625
c
8
, c
10
y
29
+ 23y
28
+ ··· 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.438147 + 0.901074I
1.63523 + 2.09123I 4.28547 3.54352I
u = 0.438147 0.901074I
1.63523 2.09123I 4.28547 + 3.54352I
u = 0.409980 + 0.948974I
0.88657 7.55674I 6.27529 + 8.69605I
u = 0.409980 0.948974I
0.88657 + 7.55674I 6.27529 8.69605I
u = 0.273126 + 0.909412I
3.81512 2.50065I 13.4942 + 5.2130I
u = 0.273126 0.909412I
3.81512 + 2.50065I 13.4942 5.2130I
u = 0.064282 + 0.911143I
0.99960 + 2.39368I 10.11411 2.65936I
u = 0.064282 0.911143I
0.99960 2.39368I 10.11411 + 2.65936I
u = 0.815394 + 0.851135I
2.82194 0.04233I 6.03677 + 1.08568I
u = 0.815394 0.851135I
2.82194 + 0.04233I 6.03677 1.08568I
u = 0.886761 + 0.845005I
9.22437 4.97924I 1.18288 + 2.83205I
u = 0.886761 0.845005I
9.22437 + 4.97924I 1.18288 2.83205I
u = 0.829632 + 0.902432I
5.95691 3.09358I 0.04639 + 2.70964I
u = 0.829632 0.902432I
5.95691 + 3.09358I 0.04639 2.70964I
u = 0.796082 + 0.934420I
2.56729 + 6.08103I 6.75508 6.19570I
u = 0.796082 0.934420I
2.56729 6.08103I 6.75508 + 6.19570I
u = 0.883056 + 0.860857I
9.96021 1.00685I 0.05949 + 2.19242I
u = 0.883056 0.860857I
9.96021 + 1.00685I 0.05949 2.19242I
u = 0.273342 + 0.693824I
0.332830 + 1.166300I 4.21359 5.75923I
u = 0.273342 0.693824I
0.332830 1.166300I 4.21359 + 5.75923I
u = 0.610942 + 0.390932I
3.23356 + 1.79478I 0.02040 2.96423I
u = 0.610942 0.390932I
3.23356 1.79478I 0.02040 + 2.96423I
u = 0.840392 + 0.961339I
9.64156 5.37662I 0.52039 + 2.73445I
u = 0.840392 0.961339I
9.64156 + 5.37662I 0.52039 2.73445I
u = 0.833145 + 0.972573I
8.8206 + 11.3493I 1.99701 7.67243I
u = 0.833145 0.972573I
8.8206 11.3493I 1.99701 + 7.67243I
u = 0.627727 + 0.308177I
2.89789 + 3.74340I 0.78236 3.16701I
u = 0.627727 0.308177I
2.89789 3.74340I 0.78236 + 3.16701I
u = 0.451236
1.36635 6.67120
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
29
+ u
28
+ ··· + 3u + 1
c
2
, c
3
, c
5
u
29
+ 7u
28
+ ··· u 1
c
4
, c
9
u
29
u
28
+ ··· + u + 1
c
6
u
29
u
28
+ ··· + 15u + 25
c
8
, c
10
u
29
+ 9u
28
+ ··· u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
29
9y
28
+ ··· y 1
c
2
, c
3
, c
5
y
29
+ 31y
28
+ ··· + 15y 1
c
4
, c
9
y
29
+ 7y
28
+ ··· y 1
c
6
y
29
+ 11y
28
+ ··· 2925y 625
c
8
, c
10
y
29
+ 23y
28
+ ··· 17y 1
7