12a
0429
(K12a
0429
)
A knot diagram
1
Linearized knot diagam
3 6 10 8 2 5 11 1 12 7 4 9
Solving Sequence
9,12
10
1,4
3 2 8 5 11 7 6
c
9
c
12
c
3
c
1
c
8
c
4
c
11
c
7
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.05234 × 10
155
u
99
+ 7.99874 × 10
155
u
98
+ ··· + 1.26559 × 10
156
b 4.31298 × 10
155
,
6.46036 × 10
154
u
99
+ 2.42368 × 10
155
u
98
+ ··· + 4.21862 × 10
155
a 2.87887 × 10
155
,
u
100
4u
99
+ ··· 2u + 2i
I
u
2
= h9b
3
+ 6b
2
u + 3b
2
6b 2u 1, a, u
2
+ u + 1i
I
u
3
= hb + 1, 2a + u, u
2
+ 2i
I
v
1
= ha, b 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 109 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.05 × 10
155
u
99
+ 8.00 × 10
155
u
98
+ · · · + 1.27 × 10
156
b 4.31 ×
10
155
, 6.46 × 10
154
u
99
+ 2.42 × 10
155
u
98
+ · · · + 4.22 × 10
155
a 2.88 ×
10
155
, u
100
4u
99
+ · · · 2u + 2i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
10
=
1
u
2
a
1
=
u
u
a
4
=
0.153139u
99
0.574519u
98
+ ··· 8.03232u + 0.682420
0.162165u
99
0.632019u
98
+ ··· 5.73442u + 0.340789
a
3
=
0.0302022u
99
+ 0.163017u
98
+ ··· 2.06770u + 0.417704
0.179404u
99
0.709755u
98
+ ··· 6.10945u + 0.349133
a
2
=
0.173099u
99
+ 0.676163u
98
+ ··· + 4.89191u + 0.906950
0.0182730u
99
0.0469571u
98
+ ··· + 4.00425u 1.14662
a
8
=
u
2
+ 1
u
2
a
5
=
0.0703189u
99
0.177839u
98
+ ··· 1.91494u + 0.223572
0.202770u
99
0.766671u
98
+ ··· 5.41230u + 0.265518
a
11
=
0.0494285u
99
0.0313702u
98
+ ··· + 1.20145u + 0.366829
0.00688276u
99
+ 0.0220776u
98
+ ··· 2.07197u + 0.512273
a
7
=
0.0425457u
99
0.0534478u
98
+ ··· + 3.27342u 0.145444
0.00688276u
99
0.0220776u
98
+ ··· + 2.07197u 0.512273
a
6
=
0.138863u
99
0.465578u
98
+ ··· 1.24267u 0.857682
0.0184998u
99
+ 0.0344608u
98
+ ··· 0.833055u + 0.461735
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.15224u
99
4.78283u
98
+ ··· 86.7199u + 10.7919
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
100
+ 34u
99
+ ··· + 925u + 81
c
2
, c
5
u
100
+ 6u
99
+ ··· + 59u + 9
c
3
27(27u
100
234u
99
+ ··· 3357967u 461099)
c
4
27(27u
100
+ 45u
99
+ ··· 4549965u + 518603)
c
7
, c
10
u
100
+ 5u
99
+ ··· 38u 3
c
8
, c
9
, c
12
u
100
+ 4u
99
+ ··· + 2u + 2
c
11
u
100
4u
99
+ ··· 12960u 5184
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
100
+ 70y
99
+ ··· 377077y + 6561
c
2
, c
5
y
100
34y
99
+ ··· 925y + 81
c
3
729
· (729y
100
+ 11502y
99
+ ··· 1559280610721y + 212612287801)
c
4
729
· (729y
100
27135y
99
+ ··· 3345262023807y + 268949071609)
c
7
, c
10
y
100
53y
99
+ ··· 658y + 9
c
8
, c
9
, c
12
y
100
+ 94y
99
+ ··· 60y + 4
c
11
y
100
+ 32y
99
+ ··· + 414305280y + 26873856
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679869 + 0.748107I
a = 0.295432 1.043560I
b = 0.528057 0.396540I
0.57702 2.41824I 0
u = 0.679869 0.748107I
a = 0.295432 + 1.043560I
b = 0.528057 + 0.396540I
0.57702 + 2.41824I 0
u = 0.936181 + 0.398524I
a = 0.806021 + 0.540723I
b = 0.497698 0.087674I
3.87531 7.09723I 0
u = 0.936181 0.398524I
a = 0.806021 0.540723I
b = 0.497698 + 0.087674I
3.87531 + 7.09723I 0
u = 0.344981 + 0.919122I
a = 0.224263 0.488787I
b = 0.173178 0.412785I
0.77026 2.23336I 0
u = 0.344981 0.919122I
a = 0.224263 + 0.488787I
b = 0.173178 + 0.412785I
0.77026 + 2.23336I 0
u = 0.849871 + 0.454924I
a = 1.30719 + 0.64935I
b = 0.877707 0.222614I
0.55952 + 13.49860I 0
u = 0.849871 0.454924I
a = 1.30719 0.64935I
b = 0.877707 + 0.222614I
0.55952 13.49860I 0
u = 0.898112 + 0.334651I
a = 0.868301 0.554620I
b = 0.482624 + 0.101398I
4.50393 1.41421I 0
u = 0.898112 0.334651I
a = 0.868301 + 0.554620I
b = 0.482624 0.101398I
4.50393 + 1.41421I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.732409 + 0.617249I
a = 0.681387 + 0.294463I
b = 0.437220 0.022316I
1.18132 2.64358I 0
u = 0.732409 0.617249I
a = 0.681387 0.294463I
b = 0.437220 + 0.022316I
1.18132 + 2.64358I 0
u = 0.758120 + 0.731071I
a = 0.266524 + 1.044920I
b = 0.488342 + 0.372478I
0.23831 8.08349I 0
u = 0.758120 0.731071I
a = 0.266524 1.044920I
b = 0.488342 0.372478I
0.23831 + 8.08349I 0
u = 0.820796 + 0.415357I
a = 1.33445 0.70691I
b = 0.838028 + 0.244297I
1.56962 + 7.53478I 0
u = 0.820796 0.415357I
a = 1.33445 + 0.70691I
b = 0.838028 0.244297I
1.56962 7.53478I 0
u = 0.739811 + 0.488405I
a = 0.236103 + 1.139040I
b = 0.383295 + 0.485386I
5.36950 2.86567I 0
u = 0.739811 0.488405I
a = 0.236103 1.139040I
b = 0.383295 0.485386I
5.36950 + 2.86567I 0
u = 0.685574 + 0.521881I
a = 1.54529 + 0.54023I
b = 0.773480 0.091899I
5.53789 + 7.57635I 0
u = 0.685574 0.521881I
a = 1.54529 0.54023I
b = 0.773480 + 0.091899I
5.53789 7.57635I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.773853 + 0.126658I
a = 0.073723 + 1.239840I
b = 0.112212 + 0.588993I
2.85478 + 2.28442I 0
u = 0.773853 0.126658I
a = 0.073723 1.239840I
b = 0.112212 0.588993I
2.85478 2.28442I 0
u = 0.742950 + 0.971442I
a = 0.379885 + 0.450207I
b = 0.443297 + 0.208112I
2.25943 + 1.26483I 0
u = 0.742950 0.971442I
a = 0.379885 0.450207I
b = 0.443297 0.208112I
2.25943 1.26483I 0
u = 0.021499 + 1.227650I
a = 0.999611 0.389930I
b = 2.86921 0.22184I
0.82547 1.32524I 0
u = 0.021499 1.227650I
a = 0.999611 + 0.389930I
b = 2.86921 + 0.22184I
0.82547 + 1.32524I 0
u = 0.682650 + 1.028010I
a = 0.314081 0.478465I
b = 0.411579 0.285935I
2.53530 4.11578I 0
u = 0.682650 1.028010I
a = 0.314081 + 0.478465I
b = 0.411579 + 0.285935I
2.53530 + 4.11578I 0
u = 0.089185 + 1.254450I
a = 1.090420 + 0.281507I
b = 3.13638 + 0.17745I
0.54484 + 5.05920I 0
u = 0.089185 1.254450I
a = 1.090420 0.281507I
b = 3.13638 0.17745I
0.54484 5.05920I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.129409 + 1.287930I
a = 0.441936 0.858037I
b = 1.209260 0.582559I
0.097636 0.577860I 0
u = 0.129409 1.287930I
a = 0.441936 + 0.858037I
b = 1.209260 + 0.582559I
0.097636 + 0.577860I 0
u = 0.591401 + 0.372296I
a = 1.78322 0.87172I
b = 0.608394 + 0.173490I
1.51260 + 4.59124I 1.18190 7.08838I
u = 0.591401 0.372296I
a = 1.78322 + 0.87172I
b = 0.608394 0.173490I
1.51260 4.59124I 1.18190 + 7.08838I
u = 0.188206 + 1.312440I
a = 0.000149 1.118010I
b = 0.03449 1.53600I
1.31735 3.54814I 0
u = 0.188206 1.312440I
a = 0.000149 + 1.118010I
b = 0.03449 + 1.53600I
1.31735 + 3.54814I 0
u = 0.049713 + 1.345270I
a = 0.51133 + 1.49541I
b = 1.17296 + 2.41695I
7.10395 1.14182I 0
u = 0.049713 1.345270I
a = 0.51133 1.49541I
b = 1.17296 2.41695I
7.10395 + 1.14182I 0
u = 0.136745 + 1.361250I
a = 0.439945 + 0.800424I
b = 1.351600 + 0.407360I
0.81482 + 5.24891I 0
u = 0.136745 1.361250I
a = 0.439945 0.800424I
b = 1.351600 0.407360I
0.81482 5.24891I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.277514 + 1.363830I
a = 0.760070 0.073241I
b = 1.46420 + 0.87101I
6.81470 + 1.22350I 0
u = 0.277514 1.363830I
a = 0.760070 + 0.073241I
b = 1.46420 0.87101I
6.81470 1.22350I 0
u = 0.089485 + 1.389530I
a = 0.090696 0.485921I
b = 0.94839 + 2.04503I
4.19619 + 2.34737I 0
u = 0.089485 1.389530I
a = 0.090696 + 0.485921I
b = 0.94839 2.04503I
4.19619 2.34737I 0
u = 0.548947 + 0.259031I
a = 1.30165 1.81150I
b = 0.262516 + 0.230241I
2.18117 6.47618I 0.36986 + 8.71363I
u = 0.548947 0.259031I
a = 1.30165 + 1.81150I
b = 0.262516 0.230241I
2.18117 + 6.47618I 0.36986 8.71363I
u = 0.583366 + 0.156368I
a = 1.51729 + 1.42250I
b = 0.302065 0.186011I
3.23926 0.72911I 2.75290 + 2.73531I
u = 0.583366 0.156368I
a = 1.51729 1.42250I
b = 0.302065 + 0.186011I
3.23926 + 0.72911I 2.75290 2.73531I
u = 0.188664 + 1.389350I
a = 0.177107 + 1.219500I
b = 0.42888 + 1.77705I
3.06032 9.15441I 0
u = 0.188664 1.389350I
a = 0.177107 1.219500I
b = 0.42888 1.77705I
3.06032 + 9.15441I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.526193 + 0.244659I
a = 1.331340 0.219705I
b = 0.414062 + 0.073402I
1.090210 0.801985I 5.31856 + 2.50411I
u = 0.526193 0.244659I
a = 1.331340 + 0.219705I
b = 0.414062 0.073402I
1.090210 + 0.801985I 5.31856 2.50411I
u = 0.406757 + 0.405711I
a = 0.429280 1.280950I
b = 0.568191 0.723482I
1.89883 1.20494I 2.45244 0.57004I
u = 0.406757 0.405711I
a = 0.429280 + 1.280950I
b = 0.568191 + 0.723482I
1.89883 + 1.20494I 2.45244 + 0.57004I
u = 0.17361 + 1.42113I
a = 0.773205 0.392754I
b = 2.26968 0.26907I
4.31361 3.27424I 0
u = 0.17361 1.42113I
a = 0.773205 + 0.392754I
b = 2.26968 + 0.26907I
4.31361 + 3.27424I 0
u = 0.08217 + 1.43290I
a = 0.012161 + 0.479575I
b = 1.47788 1.81226I
4.33040 2.95362I 0
u = 0.08217 1.43290I
a = 0.012161 0.479575I
b = 1.47788 + 1.81226I
4.33040 + 2.95362I 0
u = 0.369359 + 0.423465I
a = 2.63371 + 0.41174I
b = 0.439230 + 0.012251I
4.52529 + 0.64236I 8.88416 5.33505I
u = 0.369359 0.423465I
a = 2.63371 0.41174I
b = 0.439230 0.012251I
4.52529 0.64236I 8.88416 + 5.33505I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.04013 + 1.43787I
a = 0.368603 + 0.074688I
b = 3.17675 + 1.32808I
7.42832 + 0.17125I 0
u = 0.04013 1.43787I
a = 0.368603 0.074688I
b = 3.17675 1.32808I
7.42832 0.17125I 0
u = 0.34785 + 1.41208I
a = 0.798393 + 0.009874I
b = 1.51058 0.70211I
7.81342 + 6.46103I 0
u = 0.34785 1.41208I
a = 0.798393 0.009874I
b = 1.51058 + 0.70211I
7.81342 6.46103I 0
u = 0.15166 + 1.45394I
a = 1.341240 + 0.389661I
b = 3.44448 + 0.51105I
10.59050 + 2.67643I 0
u = 0.15166 1.45394I
a = 1.341240 0.389661I
b = 3.44448 0.51105I
10.59050 2.67643I 0
u = 0.21401 + 1.44731I
a = 1.165350 0.332979I
b = 3.24423 0.33629I
7.38327 + 7.53531I 0
u = 0.21401 1.44731I
a = 1.165350 + 0.332979I
b = 3.24423 + 0.33629I
7.38327 7.53531I 0
u = 0.04327 + 1.46569I
a = 0.612952 + 0.425075I
b = 2.22983 + 0.27823I
7.08799 + 0.13600I 0
u = 0.04327 1.46569I
a = 0.612952 0.425075I
b = 2.22983 0.27823I
7.08799 0.13600I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514435 + 0.029790I
a = 0.62541 + 1.82321I
b = 0.248771 0.638119I
4.13023 2.87256I 2.80596 + 5.41221I
u = 0.514435 0.029790I
a = 0.62541 1.82321I
b = 0.248771 + 0.638119I
4.13023 + 2.87256I 2.80596 5.41221I
u = 0.189126 + 0.472524I
a = 1.170830 0.682908I
b = 1.90042 0.09678I
1.62783 1.86935I 4.71859 + 9.09029I
u = 0.189126 0.472524I
a = 1.170830 + 0.682908I
b = 1.90042 + 0.09678I
1.62783 + 1.86935I 4.71859 9.09029I
u = 0.33202 + 1.46447I
a = 0.812027 0.326676I
b = 2.22023 0.19560I
1.27736 5.80994I 0
u = 0.33202 1.46447I
a = 0.812027 + 0.326676I
b = 2.22023 + 0.19560I
1.27736 + 5.80994I 0
u = 0.282682 + 0.397129I
a = 1.30656 + 0.57839I
b = 2.05135 + 0.16180I
1.30774 + 3.73013I 2.74021 + 5.37610I
u = 0.282682 0.397129I
a = 1.30656 0.57839I
b = 2.05135 0.16180I
1.30774 3.73013I 2.74021 5.37610I
u = 0.30445 + 1.48923I
a = 0.995764 0.381668I
b = 3.00560 0.23025I
4.57444 + 11.61720I 0
u = 0.30445 1.48923I
a = 0.995764 + 0.381668I
b = 3.00560 + 0.23025I
4.57444 11.61720I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.464839 + 0.113252I
a = 0.27220 1.70926I
b = 0.123712 + 0.765459I
3.88141 + 3.13960I 1.64371 0.37863I
u = 0.464839 0.113252I
a = 0.27220 + 1.70926I
b = 0.123712 0.765459I
3.88141 3.13960I 1.64371 + 0.37863I
u = 0.23746 + 1.50791I
a = 1.085810 + 0.439549I
b = 3.05401 + 0.40388I
12.1325 + 10.9448I 0
u = 0.23746 1.50791I
a = 1.085810 0.439549I
b = 3.05401 0.40388I
12.1325 10.9448I 0
u = 0.08480 + 1.53234I
a = 0.596803 + 0.147459I
b = 2.21447 + 0.68075I
7.40992 0.00114I 0
u = 0.08480 1.53234I
a = 0.596803 0.147459I
b = 2.21447 0.68075I
7.40992 + 0.00114I 0
u = 0.22585 + 1.52169I
a = 0.765917 + 0.329597I
b = 2.21047 + 0.25037I
8.11266 6.00339I 0
u = 0.22585 1.52169I
a = 0.765917 0.329597I
b = 2.21047 0.25037I
8.11266 + 6.00339I 0
u = 0.34530 + 1.50016I
a = 0.808150 + 0.315217I
b = 2.20445 + 0.19663I
2.24324 11.70050I 0
u = 0.34530 1.50016I
a = 0.808150 0.315217I
b = 2.20445 0.19663I
2.24324 + 11.70050I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31293 + 1.51066I
a = 0.979232 + 0.406327I
b = 2.95400 + 0.23722I
5.7917 + 17.7278I 0
u = 0.31293 1.51066I
a = 0.979232 0.406327I
b = 2.95400 0.23722I
5.7917 17.7278I 0
u = 0.24997 + 1.52779I
a = 0.716417 0.060866I
b = 1.78953 0.69898I
11.99200 + 0.79354I 0
u = 0.24997 1.52779I
a = 0.716417 + 0.060866I
b = 1.78953 + 0.69898I
11.99200 0.79354I 0
u = 0.13806 + 1.60905I
a = 0.679385 0.144169I
b = 2.01284 0.57418I
8.37514 4.86967I 0
u = 0.13806 1.60905I
a = 0.679385 + 0.144169I
b = 2.01284 + 0.57418I
8.37514 + 4.86967I 0
u = 0.313657
a = 5.14324
b = 0.161887
2.86791 11.2900
u = 0.054224 + 0.273579I
a = 1.10118 1.39810I
b = 0.515038 + 0.369932I
1.295400 + 0.319885I 8.06448 + 0.00737I
u = 0.054224 0.273579I
a = 1.10118 + 1.39810I
b = 0.515038 0.369932I
1.295400 0.319885I 8.06448 0.00737I
u = 0.203756
a = 2.23736
b = 2.72642
3.01291 42.4150
14
II. I
u
2
= h9b
3
+ 6b
2
u + 3b
2
6b 2u 1, a, u
2
+ u + 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
10
=
1
u + 1
a
1
=
u
u
a
4
=
0
b
a
3
=
b
bu
a
2
=
2b
2
u b
2
+ u
b
2
u + 2b
2
+ u
a
8
=
u
u 1
a
5
=
bu + b
2b
a
11
=
0
u
a
7
=
u
u
a
6
=
b
2
u b
2
u
4b
2
u + 2b
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17b
2
u + 30b
2
+ 11bu + b 5u 15
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
27(27u
6
27u
4
+ 6u
2
+ 1)
c
4
27(27u
6
27u
5
+ 27u
4
18u
3
+ 15u
2
6u + 1)
c
5
(u
3
u
2
+ 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
12
(u
2
u + 1)
3
c
8
, c
9
, c
10
(u
2
+ u + 1)
3
c
11
u
6
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
5
(y
3
y
2
+ 2y 1)
2
c
3
729(27y
3
27y
2
+ 6y + 1)
2
c
4
729(729y
6
+ 729y
5
+ 567y
4
+ 216y
3
+ 63y
2
6y + 1)
c
7
, c
8
, c
9
c
10
, c
12
(y
2
+ y + 1)
3
c
11
y
6
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.754678 0.124176I
3.02413 4.85801I 0.04017 + 7.54626I
u = 0.500000 + 0.866025I
a = 0
b = 0.754678 0.124176I
3.02413 + 0.79824I 1.23319 + 1.22705I
u = 0.500000 + 0.866025I
a = 0
b = 0.328997I
1.11345 2.02988I 11.69302 4.44318I
u = 0.500000 0.866025I
a = 0
b = 0.754678 + 0.124176I
3.02413 + 4.85801I 0.04017 7.54626I
u = 0.500000 0.866025I
a = 0
b = 0.754678 + 0.124176I
3.02413 0.79824I 1.23319 1.22705I
u = 0.500000 0.866025I
a = 0
b = 0.328997I
1.11345 + 2.02988I 11.69302 + 4.44318I
18
III. I
u
3
= hb + 1, 2a + u, u
2
+ 2i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
10
=
1
2
a
1
=
u
u
a
4
=
1
2
u
1
a
3
=
3
2
u + 1
2u + 1
a
2
=
1
2
u + 1
u + 1
a
8
=
1
2
a
5
=
3
2
u + 1
2u + 1
a
11
=
1
2
u
u + 1
a
7
=
1
2
u 1
u 1
a
6
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
(u 1)
2
c
3
u
2
2u + 3
c
4
u
2
+ 2u + 3
c
5
, c
6
, c
7
c
11
(u + 1)
2
c
8
, c
9
, c
12
u
2
+ 2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
10
c
11
(y 1)
2
c
3
, c
4
y
2
+ 2y + 9
c
8
, c
9
, c
12
(y + 2)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.707107I
b = 1.00000
8.22467 12.0000
u = 1.414210I
a = 0.707107I
b = 1.00000
8.22467 12.0000
22
IV. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
9
=
1
0
a
12
=
1
0
a
10
=
1
0
a
1
=
1
0
a
4
=
0
1
a
3
=
1
1
a
2
=
0
1
a
8
=
1
0
a
5
=
1
1
a
11
=
1
1
a
7
=
0
1
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
6
, c
10
u + 1
c
8
, c
9
, c
12
u
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
10
, c
11
y 1
c
8
, c
9
, c
12
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
3
u
2
+ 2u 1)
2
(u
100
+ 34u
99
+ ··· + 925u + 81)
c
2
((u 1)
3
)(u
3
+ u
2
1)
2
(u
100
+ 6u
99
+ ··· + 59u + 9)
c
3
729(u + 1)(u
2
2u + 3)(27u
6
27u
4
+ 6u
2
+ 1)
· (27u
100
234u
99
+ ··· 3357967u 461099)
c
4
729(u + 1)(u
2
+ 2u + 3)(27u
6
27u
5
+ ··· 6u + 1)
· (27u
100
+ 45u
99
+ ··· 4549965u + 518603)
c
5
((u + 1)
3
)(u
3
u
2
+ 1)
2
(u
100
+ 6u
99
+ ··· + 59u + 9)
c
6
((u + 1)
3
)(u
3
+ u
2
+ 2u + 1)
2
(u
100
+ 34u
99
+ ··· + 925u + 81)
c
7
(u 1)(u + 1)
2
(u
2
u + 1)
3
(u
100
+ 5u
99
+ ··· 38u 3)
c
8
, c
9
u(u
2
+ 2)(u
2
+ u + 1)
3
(u
100
+ 4u
99
+ ··· + 2u + 2)
c
10
((u 1)
2
)(u + 1)(u
2
+ u + 1)
3
(u
100
+ 5u
99
+ ··· 38u 3)
c
11
u
6
(u 1)(u + 1)
2
(u
100
4u
99
+ ··· 12960u 5184)
c
12
u(u
2
+ 2)(u
2
u + 1)
3
(u
100
+ 4u
99
+ ··· + 2u + 2)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
((y 1)
3
)(y
3
+ 3y
2
+ 2y 1)
2
(y
100
+ 70y
99
+ ··· 377077y + 6561)
c
2
, c
5
((y 1)
3
)(y
3
y
2
+ 2y 1)
2
(y
100
34y
99
+ ··· 925y + 81)
c
3
531441(y 1)(y
2
+ 2y + 9)(27y
3
27y
2
+ 6y + 1)
2
· (729y
100
+ 11502y
99
+ ··· 1559280610721y + 212612287801)
c
4
531441(y 1)(y
2
+ 2y + 9)
· (729y
6
+ 729y
5
+ 567y
4
+ 216y
3
+ 63y
2
6y + 1)
· (729y
100
27135y
99
+ ··· 3345262023807y + 268949071609)
c
7
, c
10
((y 1)
3
)(y
2
+ y + 1)
3
(y
100
53y
99
+ ··· 658y + 9)
c
8
, c
9
, c
12
y(y + 2)
2
(y
2
+ y + 1)
3
(y
100
+ 94y
99
+ ··· 60y + 4)
c
11
y
6
(y 1)
3
(y
100
+ 32y
99
+ ··· + 4.14305 × 10
8
y + 2.68739 × 10
7
)
28