12a
0437
(K12a
0437
)
A knot diagram
1
Linearized knot diagam
3 6 10 8 2 1 5 12 11 4 9 7
Solving Sequence
3,6
2 1 7 5 8 4 12 9 11 10
c
2
c
1
c
6
c
5
c
7
c
4
c
12
c
8
c
11
c
10
c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
74
u
73
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
74
u
73
+ · · · + u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
7
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
5
=
u
u
3
+ u
a
8
=
u
9
+ 2u
7
u
5
2u
3
+ u
u
11
3u
9
+ 4u
7
u
5
u
3
+ u
a
4
=
u
17
4u
15
+ 7u
13
4u
11
3u
9
+ 6u
7
2u
5
+ u
u
19
+ 5u
17
12u
15
+ 15u
13
9u
11
u
9
+ 4u
7
2u
5
u
3
+ u
a
12
=
u
8
+ 3u
6
3u
4
+ 1
u
8
+ 2u
6
2u
4
a
9
=
u
27
8u
25
+ ··· 3u
3
+ 2u
u
27
7u
25
+ ··· u
3
+ u
a
11
=
u
46
+ 13u
44
+ ··· + 2u
2
+ 1
u
46
+ 12u
44
+ ··· 4u
4
+ u
2
a
10
=
u
65
+ 18u
63
+ ··· + 2u
3
3u
u
65
+ 17u
63
+ ··· + 8u
5
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
73
80u
71
+ ··· 12u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
74
+ 39u
73
+ ··· + 3u + 1
c
2
, c
5
u
74
+ u
73
+ ··· u + 1
c
3
, c
10
u
74
+ u
73
+ ··· + u + 1
c
4
, c
7
u
74
7u
73
+ ··· 39u + 5
c
6
, c
12
u
74
+ 3u
73
+ ··· + 91u + 39
c
8
, c
9
, c
11
u
74
19u
73
+ ··· 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
74
7y
73
+ ··· 3y + 1
c
2
, c
5
y
74
39y
73
+ ··· 3y + 1
c
3
, c
10
y
74
19y
73
+ ··· 3y + 1
c
4
, c
7
y
74
+ 37y
73
+ ··· + 2209y + 25
c
6
, c
12
y
74
+ 53y
73
+ ··· + 25961y + 1521
c
8
, c
9
, c
11
y
74
+ 73y
73
+ ··· + 5y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.835681 + 0.560605I
2.03574 + 3.50542I 2.00000 4.07643I
u = 0.835681 0.560605I
2.03574 3.50542I 2.00000 + 4.07643I
u = 0.832665 + 0.571463I
1.51570 9.58110I 2.00000 + 8.95690I
u = 0.832665 0.571463I
1.51570 + 9.58110I 2.00000 8.95690I
u = 0.791742 + 0.569661I
5.17088 5.15812I 8.32835 + 7.79457I
u = 0.791742 0.569661I
5.17088 + 5.15812I 8.32835 7.79457I
u = 1.028500 + 0.160985I
6.85388 + 0.05460I 5.85707 + 0.I
u = 1.028500 0.160985I
6.85388 0.05460I 5.85707 + 0.I
u = 1.038800 + 0.183643I
6.59018 + 6.05194I 0
u = 1.038800 0.183643I
6.59018 6.05194I 0
u = 0.771164 + 0.538007I
2.30346 + 2.17439I 2.29501 3.84413I
u = 0.771164 0.538007I
2.30346 2.17439I 2.29501 + 3.84413I
u = 0.745955 + 0.571289I
5.30206 + 0.62127I 9.02433 0.60864I
u = 0.745955 0.571289I
5.30206 0.62127I 9.02433 + 0.60864I
u = 0.878223 + 0.286781I
0.13660 + 3.04210I 1.28348 9.03887I
u = 0.878223 0.286781I
0.13660 3.04210I 1.28348 + 9.03887I
u = 0.694463 + 0.581556I
1.12248 + 5.01071I 3.66328 2.35709I
u = 0.694463 0.581556I
1.12248 5.01071I 3.66328 + 2.35709I
u = 0.685413 + 0.567131I
1.61031 + 0.99347I 2.79378 2.74942I
u = 0.685413 0.567131I
1.61031 0.99347I 2.79378 + 2.74942I
u = 0.847866 + 0.088742I
1.39303 0.27331I 6.60583 + 0.30491I
u = 0.847866 0.088742I
1.39303 + 0.27331I 6.60583 0.30491I
u = 0.173274 + 0.798587I
4.67079 + 10.47000I 0.63032 6.91545I
u = 0.173274 0.798587I
4.67079 10.47000I 0.63032 + 6.91545I
u = 1.125660 + 0.366050I
0.67532 + 2.89635I 0
u = 1.125660 0.366050I
0.67532 2.89635I 0
u = 0.166312 + 0.795857I
5.18741 4.27377I 0.40124 + 2.07461I
u = 0.166312 0.795857I
5.18741 + 4.27377I 0.40124 2.07461I
u = 0.188589 + 0.769066I
2.46946 + 6.12626I 6.02496 6.71747I
u = 0.188589 0.769066I
2.46946 6.12626I 6.02496 + 6.71747I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.110190 + 0.478729I
5.42714 + 6.46328I 0
u = 1.110190 0.478729I
5.42714 6.46328I 0
u = 0.005571 + 0.786467I
9.15015 3.13723I 3.27787 + 2.62981I
u = 0.005571 0.786467I
9.15015 + 3.13723I 3.27787 2.62981I
u = 1.174870 + 0.351936I
1.57203 2.51139I 0
u = 1.174870 0.351936I
1.57203 + 2.51139I 0
u = 1.120020 + 0.499746I
5.15715 0.75516I 0
u = 1.120020 0.499746I
5.15715 + 0.75516I 0
u = 1.169010 + 0.376170I
3.98603 0.84644I 0
u = 1.169010 0.376170I
3.98603 + 0.84644I 0
u = 0.166580 + 0.745150I
0.14116 2.82982I 0.06496 + 2.64345I
u = 0.166580 0.745150I
0.14116 + 2.82982I 0.06496 2.64345I
u = 1.169510 + 0.425972I
5.43464 2.14338I 0
u = 1.169510 0.425972I
5.43464 + 2.14338I 0
u = 0.210100 + 0.723982I
3.11981 + 0.43939I 8.03831 + 0.99678I
u = 0.210100 0.723982I
3.11981 0.43939I 8.03831 0.99678I
u = 1.201560 + 0.355229I
8.81870 6.66835I 0
u = 1.201560 0.355229I
8.81870 + 6.66835I 0
u = 1.201080 + 0.360636I
9.29736 + 0.44713I 0
u = 1.201080 0.360636I
9.29736 0.44713I 0
u = 1.165630 + 0.467482I
5.13613 + 6.19077I 0
u = 1.165630 0.467482I
5.13613 6.19077I 0
u = 1.153100 + 0.513557I
0.38073 5.11443I 0
u = 1.153100 0.513557I
0.38073 + 5.11443I 0
u = 1.168850 + 0.508704I
3.05084 + 7.51931I 0
u = 1.168850 0.508704I
3.05084 7.51931I 0
u = 1.170470 + 0.520288I
0.40431 10.92870I 0
u = 1.170470 0.520288I
0.40431 + 10.92870I 0
u = 0.275029 + 0.663064I
2.70930 3.72938I 2.81438 + 3.00373I
u = 0.275029 0.663064I
2.70930 + 3.72938I 2.81438 3.00373I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.204050 + 0.448056I
12.69820 1.26903I 0
u = 1.204050 0.448056I
12.69820 + 1.26903I 0
u = 1.203510 + 0.453057I
12.6628 + 7.5767I 0
u = 1.203510 0.453057I
12.6628 7.5767I 0
u = 1.184440 + 0.519711I
8.18403 + 9.13195I 0
u = 1.184440 0.519711I
8.18403 9.13195I 0
u = 0.054792 + 0.704044I
2.00051 1.86805I 1.34178 + 4.37957I
u = 0.054792 0.704044I
2.00051 + 1.86805I 1.34178 4.37957I
u = 1.183790 + 0.522761I
7.6480 15.3506I 0
u = 1.183790 0.522761I
7.6480 + 15.3506I 0
u = 0.281349 + 0.627967I
3.03701 2.14947I 2.22194 + 2.48741I
u = 0.281349 0.627967I
3.03701 + 2.14947I 2.22194 2.48741I
u = 0.440598 + 0.299753I
1.125240 0.112962I 9.20316 + 0.37924I
u = 0.440598 0.299753I
1.125240 + 0.112962I 9.20316 0.37924I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
74
+ 39u
73
+ ··· + 3u + 1
c
2
, c
5
u
74
+ u
73
+ ··· u + 1
c
3
, c
10
u
74
+ u
73
+ ··· + u + 1
c
4
, c
7
u
74
7u
73
+ ··· 39u + 5
c
6
, c
12
u
74
+ 3u
73
+ ··· + 91u + 39
c
8
, c
9
, c
11
u
74
19u
73
+ ··· 3u + 1
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
74
7y
73
+ ··· 3y + 1
c
2
, c
5
y
74
39y
73
+ ··· 3y + 1
c
3
, c
10
y
74
19y
73
+ ··· 3y + 1
c
4
, c
7
y
74
+ 37y
73
+ ··· + 2209y + 25
c
6
, c
12
y
74
+ 53y
73
+ ··· + 25961y + 1521
c
8
, c
9
, c
11
y
74
+ 73y
73
+ ··· + 5y + 1
9