12a
0444
(K12a
0444
)
A knot diagram
1
Linearized knot diagam
3 6 10 9 2 12 11 5 4 8 1 7
Solving Sequence
4,9 2,5
6 10 3 1 8 11 7 12
c
4
c
5
c
9
c
3
c
1
c
8
c
10
c
7
c
12
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
23
2u
22
+ ··· + b 1, u
24
+ 3u
23
+ ··· + 2a + 8u, u
25
+ 3u
24
+ ··· + 8u + 2i
I
u
2
= h2u
20
a 2u
20
+ ··· + b + 1, 2u
20
a + 2u
20
+ ··· 2a + 1, u
21
u
20
+ ··· u + 1i
I
u
3
= hb u 1, 2a + u, u
2
+ 2i
I
v
1
= ha, b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
23
2u
22
+· · ·+b1, u
24
+3u
23
+· · ·+2a+8u, u
25
+3u
24
+· · ·+8u+2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
1
2
u
24
3
2
u
23
+ ··· 6u
2
4u
u
23
+ 2u
22
+ ··· + 3u + 1
a
5
=
1
u
2
a
6
=
1
2
u
24
1
2
u
23
+ ··· u + 1
u
23
2u
22
+ ··· 3u 1
a
10
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
3
2
u
24
9
2
u
23
+ ··· 14u 3
2u
23
+ 5u
22
+ ··· + 9u + 3
a
8
=
u
u
3
+ u
a
11
=
u
5
+ 2u
3
u
u
7
+ 3u
5
+ 2u
3
+ u
a
7
=
u
9
+ 4u
7
+ 3u
5
2u
3
+ u
u
11
+ 5u
9
+ 8u
7
+ 5u
5
+ 3u
3
+ u
a
12
=
1
2
u
24
+
3
2
u
23
+ ··· + 3u + 1
u
23
2u
22
+ ··· 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
24
18u
23
126u
22
242u
21
840u
20
1374u
19
3088u
18
4262u
17
6822u
16
7792u
15
9236u
14
8416u
13
7450u
12
5034u
11
3220u
10
1314u
9
430u
8
+ 106u
7
+ 170u
6
+ 114u
5
24u
4
78u
3
80u
2
54u 24
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
25
+ 13u
24
+ ··· + 7u + 1
c
2
, c
5
, c
6
c
12
u
25
+ u
24
+ ··· + u + 1
c
3
, c
4
, c
8
c
9
u
25
+ 3u
24
+ ··· + 8u + 2
c
7
, c
10
u
25
+ 3u
24
+ ··· 96u
2
+ 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
25
+ 3y
24
+ ··· + 15y 1
c
2
, c
5
, c
6
c
12
y
25
13y
24
+ ··· + 7y 1
c
3
, c
4
, c
8
c
9
y
25
+ 27y
24
+ ··· + 8y 4
c
7
, c
10
y
25
+ 19y
24
+ ··· + 3072y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.651480 + 0.569397I
a = 1.31726 1.62418I
b = 0.115293 + 0.307631I
8.03966 + 11.38840I 12.3901 9.1803I
u = 0.651480 0.569397I
a = 1.31726 + 1.62418I
b = 0.115293 0.307631I
8.03966 11.38840I 12.3901 + 9.1803I
u = 0.683025 + 0.436288I
a = 0.878062 + 0.233968I
b = 0.828869 0.938936I
8.43694 6.90173I 13.44025 + 3.63036I
u = 0.683025 0.436288I
a = 0.878062 0.233968I
b = 0.828869 + 0.938936I
8.43694 + 6.90173I 13.44025 3.63036I
u = 0.412040 + 0.685850I
a = 0.47621 + 1.83448I
b = 0.072745 0.306443I
0.17864 6.77079I 7.18283 + 10.35931I
u = 0.412040 0.685850I
a = 0.47621 1.83448I
b = 0.072745 + 0.306443I
0.17864 + 6.77079I 7.18283 10.35931I
u = 0.558289 + 0.498098I
a = 0.708276 + 0.173203I
b = 0.206889 + 0.374837I
1.41690 + 1.92070I 6.23376 3.47212I
u = 0.558289 0.498098I
a = 0.708276 0.173203I
b = 0.206889 0.374837I
1.41690 1.92070I 6.23376 + 3.47212I
u = 0.023881 + 0.737446I
a = 0.622644 0.953292I
b = 0.315147 + 0.069716I
1.88598 + 1.45733I 1.26812 4.21250I
u = 0.023881 0.737446I
a = 0.622644 + 0.953292I
b = 0.315147 0.069716I
1.88598 1.45733I 1.26812 + 4.21250I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.054153 + 1.332330I
a = 0.077174 0.173973I
b = 0.971993 + 0.051958I
2.62061 + 1.17903I 5.07770 5.84448I
u = 0.054153 1.332330I
a = 0.077174 + 0.173973I
b = 0.971993 0.051958I
2.62061 1.17903I 5.07770 + 5.84448I
u = 0.573959 + 0.177466I
a = 0.874794 0.104864I
b = 0.619515 + 0.565743I
1.76413 + 3.37976I 11.30285 5.40492I
u = 0.573959 0.177466I
a = 0.874794 + 0.104864I
b = 0.619515 0.565743I
1.76413 3.37976I 11.30285 + 5.40492I
u = 0.21436 + 1.46119I
a = 0.144093 + 0.127422I
b = 0.970978 + 0.088622I
2.31754 3.68038I 10.19471 + 3.82630I
u = 0.21436 1.46119I
a = 0.144093 0.127422I
b = 0.970978 0.088622I
2.31754 + 3.68038I 10.19471 3.82630I
u = 0.16059 + 1.52773I
a = 0.753431 0.916816I
b = 1.12967 + 1.67442I
5.30944 + 4.47743I 2.55629 2.34174I
u = 0.16059 1.52773I
a = 0.753431 + 0.916816I
b = 1.12967 1.67442I
5.30944 4.47743I 2.55629 + 2.34174I
u = 0.20643 + 1.54713I
a = 0.25239 + 1.93004I
b = 0.58907 4.16682I
1.0459 + 14.5269I 8.91507 8.56336I
u = 0.20643 1.54713I
a = 0.25239 1.93004I
b = 0.58907 + 4.16682I
1.0459 14.5269I 8.91507 + 8.56336I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.01772 + 1.57526I
a = 0.91307 + 1.41013I
b = 1.55989 2.89337I
9.63847 + 1.22771I 0.35980 3.25847I
u = 0.01772 1.57526I
a = 0.91307 1.41013I
b = 1.55989 + 2.89337I
9.63847 1.22771I 0.35980 + 3.25847I
u = 0.10120 + 1.57793I
a = 0.39162 1.95619I
b = 0.60654 + 4.12616I
7.45823 8.58001I 4.35516 + 8.14193I
u = 0.10120 1.57793I
a = 0.39162 + 1.95619I
b = 0.60654 4.12616I
7.45823 + 8.58001I 4.35516 8.14193I
u = 0.417568
a = 0.897008
b = 0.362213
0.846371 11.4470
7
II. I
u
2
=
h2u
20
a 2u
20
+· · ·+b +1, 2u
20
a +2u
20
+· · ·2a +1, u
21
u
20
+· · ·u +1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
a
2u
20
a + 2u
20
+ ··· 3u 1
a
5
=
1
u
2
a
6
=
2u
20
a + 2u
20
+ ··· + a 1
2u
20
a 2u
20
+ ··· + 3u + 1
a
10
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
2u
20
a + 2u
20
+ ··· + a 1
2u
20
a + 2u
20
+ ··· u 1
a
8
=
u
u
3
+ u
a
11
=
u
5
+ 2u
3
u
u
7
+ 3u
5
+ 2u
3
+ u
a
7
=
u
9
+ 4u
7
+ 3u
5
2u
3
+ u
u
11
+ 5u
9
+ 8u
7
+ 5u
5
+ 3u
3
+ u
a
12
=
2u
20
a + 2u
20
+ ··· + a 1
u
17
a 9u
15
a + ··· + 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
20
4u
19
+ 48u
18
40u
17
+ 232u
16
156u
15
+ 572u
14
292u
13
+ 756u
12
256u
11
+ 552u
10
88u
9
+ 316u
8
24u
7
+ 204u
6
8u
5
+ 48u
4
+ 20u
3
+ 16u
2
+ 16u 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
42
+ 25u
41
+ ··· + 52u + 9
c
2
, c
5
, c
6
c
12
u
42
+ u
41
+ ··· + 8u + 3
c
3
, c
4
, c
8
c
9
(u
21
u
20
+ ··· u + 1)
2
c
7
, c
10
(u
21
+ 3u
20
+ ··· + 5u + 3)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
42
17y
41
+ ··· 868y + 81
c
2
, c
5
, c
6
c
12
y
42
25y
41
+ ··· 52y + 9
c
3
, c
4
, c
8
c
9
(y
21
+ 23y
20
+ ··· 5y 1)
2
c
7
, c
10
(y
21
+ 19y
20
+ ··· + 7y 9)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.613284 + 0.552606I
a = 0.663670 0.167306I
b = 0.258836 0.415847I
4.68217 6.45770I 9.45356 + 6.39068I
u = 0.613284 + 0.552606I
a = 1.31427 + 1.76259I
b = 0.095105 0.288417I
4.68217 6.45770I 9.45356 + 6.39068I
u = 0.613284 0.552606I
a = 0.663670 + 0.167306I
b = 0.258836 + 0.415847I
4.68217 + 6.45770I 9.45356 6.39068I
u = 0.613284 0.552606I
a = 1.31427 1.76259I
b = 0.095105 + 0.288417I
4.68217 + 6.45770I 9.45356 6.39068I
u = 0.621912 + 0.497822I
a = 0.918873 + 0.252143I
b = 0.963307 0.936491I
8.79207 + 2.11040I 13.9124 3.3898I
u = 0.621912 + 0.497822I
a = 1.51743 1.81016I
b = 0.112550 + 0.257173I
8.79207 + 2.11040I 13.9124 3.3898I
u = 0.621912 0.497822I
a = 0.918873 0.252143I
b = 0.963307 + 0.936491I
8.79207 2.11040I 13.9124 + 3.3898I
u = 0.621912 0.497822I
a = 1.51743 + 1.81016I
b = 0.112550 0.257173I
8.79207 2.11040I 13.9124 + 3.3898I
u = 0.630060 + 0.435502I
a = 0.902520 0.223812I
b = 0.882881 + 0.878598I
5.02710 + 2.23968I 10.49766 0.17506I
u = 0.630060 + 0.435502I
a = 0.706600 0.119856I
b = 0.159229 0.443860I
5.02710 + 2.23968I 10.49766 0.17506I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.630060 0.435502I
a = 0.902520 + 0.223812I
b = 0.882881 0.878598I
5.02710 2.23968I 10.49766 + 0.17506I
u = 0.630060 0.435502I
a = 0.706600 + 0.119856I
b = 0.159229 + 0.443860I
5.02710 2.23968I 10.49766 + 0.17506I
u = 0.264535 + 0.686798I
a = 0.696463 + 0.484067I
b = 0.329117 + 0.122623I
1.27822 + 2.45481I 3.17392 5.13736I
u = 0.264535 + 0.686798I
a = 0.08311 1.80534I
b = 0.158741 + 0.236037I
1.27822 + 2.45481I 3.17392 5.13736I
u = 0.264535 0.686798I
a = 0.696463 0.484067I
b = 0.329117 0.122623I
1.27822 2.45481I 3.17392 + 5.13736I
u = 0.264535 0.686798I
a = 0.08311 + 1.80534I
b = 0.158741 0.236037I
1.27822 2.45481I 3.17392 + 5.13736I
u = 0.17161 + 1.47674I
a = 0.734220 + 0.822924I
b = 1.13685 1.39375I
1.167780 0.589478I 6.95446 0.27365I
u = 0.17161 + 1.47674I
a = 0.126348 0.107181I
b = 0.987004 0.067695I
1.167780 0.589478I 6.95446 0.27365I
u = 0.17161 1.47674I
a = 0.734220 0.822924I
b = 1.13685 + 1.39375I
1.167780 + 0.589478I 6.95446 + 0.27365I
u = 0.17161 1.47674I
a = 0.126348 + 0.107181I
b = 0.987004 + 0.067695I
1.167780 + 0.589478I 6.95446 + 0.27365I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.03893 + 1.51037I
a = 0.0956698 0.0258264I
b = 1.020350 0.014142I
3.29266 1.66521I 6.44233 + 3.90994I
u = 0.03893 + 1.51037I
a = 1.43429 2.27893I
b = 2.73302 + 4.65122I
3.29266 1.66521I 6.44233 + 3.90994I
u = 0.03893 1.51037I
a = 0.0956698 + 0.0258264I
b = 1.020350 + 0.014142I
3.29266 + 1.66521I 6.44233 3.90994I
u = 0.03893 1.51037I
a = 1.43429 + 2.27893I
b = 2.73302 4.65122I
3.29266 + 1.66521I 6.44233 3.90994I
u = 0.18541 + 1.51409I
a = 0.144635 + 0.094757I
b = 1.004590 + 0.080707I
2.18398 + 5.00460I 10.15348 3.34739I
u = 0.18541 + 1.51409I
a = 0.31289 + 2.15828I
b = 0.68662 4.58559I
2.18398 + 5.00460I 10.15348 3.34739I
u = 0.18541 1.51409I
a = 0.144635 0.094757I
b = 1.004590 0.080707I
2.18398 5.00460I 10.15348 + 3.34739I
u = 0.18541 1.51409I
a = 0.31289 2.15828I
b = 0.68662 + 4.58559I
2.18398 5.00460I 10.15348 + 3.34739I
u = 0.224591 + 0.416086I
a = 1.057800 0.095161I
b = 1.241430 + 0.325944I
3.19863 0.86446I 9.82793 + 8.05526I
u = 0.224591 + 0.416086I
a = 0.94469 + 4.04424I
b = 0.0521710 0.1030170I
3.19863 0.86446I 9.82793 + 8.05526I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.224591 0.416086I
a = 1.057800 + 0.095161I
b = 1.241430 0.325944I
3.19863 + 0.86446I 9.82793 8.05526I
u = 0.224591 0.416086I
a = 0.94469 4.04424I
b = 0.0521710 + 0.1030170I
3.19863 + 0.86446I 9.82793 8.05526I
u = 0.463882
a = 0.882798 + 0.014771I
b = 0.402171 0.224592I
0.823381 10.2590
u = 0.463882
a = 0.882798 0.014771I
b = 0.402171 + 0.224592I
0.823381 10.2590
u = 0.18830 + 1.54115I
a = 0.703578 + 0.924146I
b = 0.97403 1.67776I
2.24917 9.37044I 5.88057 + 5.65030I
u = 0.18830 + 1.54115I
a = 0.20144 2.02236I
b = 0.49031 + 4.33008I
2.24917 9.37044I 5.88057 + 5.65030I
u = 0.18830 1.54115I
a = 0.703578 0.924146I
b = 0.97403 + 1.67776I
2.24917 + 9.37044I 5.88057 5.65030I
u = 0.18830 1.54115I
a = 0.20144 + 2.02236I
b = 0.49031 4.33008I
2.24917 + 9.37044I 5.88057 5.65030I
u = 0.06297 + 1.57333I
a = 0.87578 1.19347I
b = 1.44224 + 2.40342I
8.90560 + 3.59224I 1.57394 3.20950I
u = 0.06297 + 1.57333I
a = 0.65794 + 1.88952I
b = 1.11820 3.94658I
8.90560 + 3.59224I 1.57394 3.20950I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.06297 1.57333I
a = 0.87578 + 1.19347I
b = 1.44224 2.40342I
8.90560 3.59224I 1.57394 + 3.20950I
u = 0.06297 1.57333I
a = 0.65794 1.88952I
b = 1.11820 + 3.94658I
8.90560 3.59224I 1.57394 + 3.20950I
15
III. I
u
3
= hb u 1, 2a + u, u
2
+ 2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
1
2
u
u + 1
a
5
=
1
2
a
6
=
1
2
u + 1
u 1
a
10
=
u
u
a
3
=
1
2
a
1
=
1
2
u + 1
u 1
a
8
=
u
u
a
11
=
u
u
a
7
=
u
u
a
12
=
3
2
u + 1
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
2
c
2
, c
6
(u + 1)
2
c
3
, c
4
, c
8
c
9
u
2
+ 2
c
7
, c
10
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
8
c
9
(y + 2)
2
c
7
, c
10
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.707107I
b = 1.00000 + 1.41421I
1.64493 12.0000
u = 1.414210I
a = 0.707107I
b = 1.00000 1.41421I
1.64493 12.0000
19
IV. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
10
=
1
0
a
3
=
1
0
a
1
=
1
1
a
8
=
1
0
a
11
=
1
0
a
7
=
1
0
a
12
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
12
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u 1)
3
)(u
25
+ 13u
24
+ ··· + 7u + 1)(u
42
+ 25u
41
+ ··· + 52u + 9)
c
2
, c
6
(u 1)(u + 1)
2
(u
25
+ u
24
+ ··· + u + 1)(u
42
+ u
41
+ ··· + 8u + 3)
c
3
, c
4
, c
8
c
9
u(u
2
+ 2)(u
21
u
20
+ ··· u + 1)
2
(u
25
+ 3u
24
+ ··· + 8u + 2)
c
5
, c
12
((u 1)
2
)(u + 1)(u
25
+ u
24
+ ··· + u + 1)(u
42
+ u
41
+ ··· + 8u + 3)
c
7
, c
10
u
3
(u
21
+ 3u
20
+ ··· + 5u + 3)
2
(u
25
+ 3u
24
+ ··· 96u
2
+ 16)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y 1)
3
)(y
25
+ 3y
24
+ ··· + 15y 1)(y
42
17y
41
+ ··· 868y + 81)
c
2
, c
5
, c
6
c
12
((y 1)
3
)(y
25
13y
24
+ ··· + 7y 1)(y
42
25y
41
+ ··· 52y + 9)
c
3
, c
4
, c
8
c
9
y(y + 2)
2
(y
21
+ 23y
20
+ ··· 5y 1)
2
(y
25
+ 27y
24
+ ··· + 8y 4)
c
7
, c
10
y
3
(y
21
+ 19y
20
+ ··· + 7y 9)
2
(y
25
+ 19y
24
+ ··· + 3072y 256)
25