12a
0498
(K12a
0498
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 10 2 1 12 11 5 6 4
Solving Sequence
6,10
5 11 12 9 4 1 8 3 2 7
c
5
c
10
c
11
c
9
c
4
c
12
c
8
c
3
c
1
c
7
c
2
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
103
u
102
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 103 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
103
u
102
+ · · · + 2u 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
12
=
u
3
u
3
+ u
a
9
=
u
3
u
5
+ u
3
+ u
a
4
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
1
=
u
17
+ 4u
15
+ 7u
13
+ 4u
11
3u
9
6u
7
2u
5
+ u
u
19
+ 5u
17
+ 12u
15
+ 15u
13
+ 9u
11
u
9
4u
7
2u
5
+ u
3
+ u
a
8
=
u
11
+ 2u
9
+ 2u
7
+ u
3
u
11
3u
9
4u
7
u
5
+ u
3
+ u
a
3
=
u
30
+ 7u
28
+ ··· 2u
12
+ 1
u
30
8u
28
+ ··· 4u
6
+ u
2
a
2
=
u
79
20u
77
+ ··· 20u
9
8u
7
u
79
+ 21u
77
+ ··· 2u
5
+ u
a
7
=
u
47
+ 12u
45
+ ··· + 20u
9
+ 8u
7
u
49
+ 13u
47
+ ··· 2u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
101
4u
100
+ ··· + 8u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
103
+ 49u
102
+ ··· + 2u
2
+ 1
c
2
, c
6
u
103
u
102
+ ··· 2u
3
+ 1
c
3
u
103
+ u
102
+ ··· + 1790u + 193
c
4
, c
11
u
103
u
102
+ ··· 25u + 2
c
5
, c
10
u
103
+ u
102
+ ··· + 2u + 1
c
7
u
103
3u
102
+ ··· 1595u + 264
c
8
u
103
13u
102
+ ··· 20u + 1
c
9
u
103
+ 55u
102
+ ··· + 2u
2
1
c
12
u
103
+ 11u
102
+ ··· + 34220u + 1889
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
103
+ 11y
102
+ ··· 4y 1
c
2
, c
6
y
103
49y
102
+ ··· 2y
2
1
c
3
y
103
17y
102
+ ··· + 4028596y 37249
c
4
, c
11
y
103
81y
102
+ ··· + 933y 4
c
5
, c
10
y
103
+ 55y
102
+ ··· + 2y
2
1
c
7
y
103
+ 27y
102
+ ··· + 634249y 69696
c
8
y
103
y
102
+ ··· 180y 1
c
9
y
103
13y
102
+ ··· + 4y 1
c
12
y
103
+ 31y
102
+ ··· 195909780y 3568321
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.320002 + 0.958821I
2.49900 2.30744I 0
u = 0.320002 0.958821I
2.49900 + 2.30744I 0
u = 0.534967 + 0.830815I
3.38408 + 4.66858I 0
u = 0.534967 0.830815I
3.38408 4.66858I 0
u = 0.441175 + 0.910998I
3.42985 + 4.70264I 0
u = 0.441175 0.910998I
3.42985 4.70264I 0
u = 0.541474 + 0.859884I
2.20908 + 6.71950I 0
u = 0.541474 0.859884I
2.20908 6.71950I 0
u = 0.087684 + 1.013270I
1.99452 2.80437I 0
u = 0.087684 1.013270I
1.99452 + 2.80437I 0
u = 0.523217 + 0.872636I
2.24888 4.14811I 0
u = 0.523217 0.872636I
2.24888 + 4.14811I 0
u = 0.045722 + 1.023600I
6.06661 0.02451I 0
u = 0.045722 1.023600I
6.06661 + 0.02451I 0
u = 0.547125 + 0.867720I
0.03965 11.69240I 0
u = 0.547125 0.867720I
0.03965 + 11.69240I 0
u = 0.533856 + 0.809048I
2.26374 + 0.02287I 0
u = 0.533856 0.809048I
2.26374 0.02287I 0
u = 0.087532 + 1.037130I
4.34488 + 7.57420I 0
u = 0.087532 1.037130I
4.34488 7.57420I 0
u = 0.381785 + 0.832663I
0.30974 1.63761I 2.00000 + 4.14879I
u = 0.381785 0.832663I
0.30974 + 1.63761I 2.00000 4.14879I
u = 0.141462 + 0.904392I
0.78760 1.61551I 4.77158 + 5.03318I
u = 0.141462 0.904392I
0.78760 + 1.61551I 4.77158 5.03318I
u = 0.536452 + 0.718227I
2.52300 4.35721I 2.56802 + 6.19679I
u = 0.536452 0.718227I
2.52300 + 4.35721I 2.56802 6.19679I
u = 0.535239 + 0.691052I
3.78238 0.33262I 5.03269 + 0.16609I
u = 0.535239 0.691052I
3.78238 + 0.33262I 5.03269 0.16609I
u = 0.547689 + 0.647135I
2.80904 2.32969I 3.45285 + 0.74524I
u = 0.547689 0.647135I
2.80904 + 2.32969I 3.45285 0.74524I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.559868 + 0.635760I
0.61339 + 7.25494I 0.02996 4.75396I
u = 0.559868 0.635760I
0.61339 7.25494I 0.02996 + 4.75396I
u = 0.809540 + 0.143509I
3.50008 12.18120I 3.85836 + 8.38881I
u = 0.809540 0.143509I
3.50008 + 12.18120I 3.85836 8.38881I
u = 0.445875 + 1.093170I
2.45934 2.02600I 0
u = 0.445875 1.093170I
2.45934 + 2.02600I 0
u = 0.803251 + 0.142576I
1.14708 + 7.17209I 0.67329 4.76301I
u = 0.803251 0.142576I
1.14708 7.17209I 0.67329 + 4.76301I
u = 0.804809 + 0.129898I
5.67192 4.37319I 7.09504 + 2.73875I
u = 0.804809 0.129898I
5.67192 + 4.37319I 7.09504 2.73875I
u = 0.797909 + 0.089556I
6.79166 + 4.06327I 8.41458 3.83338I
u = 0.797909 0.089556I
6.79166 4.06327I 8.41458 + 3.83338I
u = 0.517494 + 0.613373I
1.53027 0.11065I 3.24306 + 0.89379I
u = 0.517494 0.613373I
1.53027 + 0.11065I 3.24306 0.89379I
u = 0.794335 + 0.064613I
5.68131 3.71782I 6.83433 + 3.40780I
u = 0.794335 0.064613I
5.68131 + 3.71782I 6.83433 3.40780I
u = 0.459511 + 1.112040I
0.58125 2.76277I 0
u = 0.459511 1.112040I
0.58125 + 2.76277I 0
u = 0.781132 + 0.146005I
0.37432 + 5.13241I 0.93560 5.60814I
u = 0.781132 0.146005I
0.37432 5.13241I 0.93560 + 5.60814I
u = 0.780054 + 0.075837I
3.06587 0.76136I 3.45076 + 0.45885I
u = 0.780054 0.075837I
3.06587 + 0.76136I 3.45076 0.45885I
u = 0.760196 + 0.147480I
0.480238 0.466709I 0.489197 0.458195I
u = 0.760196 0.147480I
0.480238 + 0.466709I 0.489197 + 0.458195I
u = 0.482703 + 1.131700I
0.31489 4.81582I 0
u = 0.482703 1.131700I
0.31489 + 4.81582I 0
u = 0.492426 + 1.138620I
1.91052 + 9.61857I 0
u = 0.492426 1.138620I
1.91052 9.61857I 0
u = 0.385750 + 1.179600I
4.33059 + 3.34041I 0
u = 0.385750 1.179600I
4.33059 3.34041I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.451490 + 1.158040I
4.91669 + 4.10196I 0
u = 0.451490 1.158040I
4.91669 4.10196I 0
u = 0.378666 + 1.194090I
3.58733 + 1.25660I 0
u = 0.378666 1.194090I
3.58733 1.25660I 0
u = 0.376464 + 1.209810I
5.20506 + 3.20479I 0
u = 0.376464 1.209810I
5.20506 3.20479I 0
u = 0.374856 + 1.213940I
7.59081 8.19597I 0
u = 0.374856 1.213940I
7.59081 + 8.19597I 0
u = 0.384326 + 1.212720I
9.69391 0.34298I 0
u = 0.384326 1.212720I
9.69391 + 0.34298I 0
u = 0.416060 + 1.204580I
6.81980 + 3.40849I 0
u = 0.416060 1.204580I
6.81980 3.40849I 0
u = 0.408104 + 1.212180I
10.65190 0.10842I 0
u = 0.408104 1.212180I
10.65190 + 0.10842I 0
u = 0.505040 + 1.178370I
3.48508 + 5.17017I 0
u = 0.505040 1.178370I
3.48508 5.17017I 0
u = 0.420660 + 1.211380I
9.45073 7.96797I 0
u = 0.420660 1.211380I
9.45073 + 7.96797I 0
u = 0.509259 + 1.184590I
2.66866 9.90267I 0
u = 0.509259 1.184590I
2.66866 + 9.90267I 0
u = 0.484969 + 1.194950I
6.32937 + 5.38147I 0
u = 0.484969 1.194950I
6.32937 5.38147I 0
u = 0.481638 + 1.201620I
9.01650 0.91732I 0
u = 0.481638 1.201620I
9.01650 + 0.91732I 0
u = 0.492114 + 1.200160I
10.05500 8.77175I 0
u = 0.492114 1.200160I
10.05500 + 8.77175I 0
u = 0.513000 + 1.192750I
4.24234 12.01220I 0
u = 0.513000 1.192750I
4.24234 + 12.01220I 0
u = 0.508768 + 1.195870I
8.81383 + 9.19354I 0
u = 0.508768 1.195870I
8.81383 9.19354I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514711 + 1.194780I
6.6041 + 17.0451I 0
u = 0.514711 1.194780I
6.6041 17.0451I 0
u = 0.661537 + 0.209917I
0.75840 5.17774I 0.84738 + 5.82465I
u = 0.661537 0.209917I
0.75840 + 5.17774I 0.84738 5.82465I
u = 0.573521 + 0.343141I
0.33434 + 6.07580I 0.41612 5.54107I
u = 0.573521 0.343141I
0.33434 6.07580I 0.41612 + 5.54107I
u = 0.663359
1.74433 5.00130
u = 0.620334 + 0.222321I
2.29486 + 0.50156I 4.19126 0.10094I
u = 0.620334 0.222321I
2.29486 0.50156I 4.19126 + 0.10094I
u = 0.562085 + 0.303335I
1.76281 1.30056I 3.34163 + 1.25432I
u = 0.562085 0.303335I
1.76281 + 1.30056I 3.34163 1.25432I
u = 0.470704 + 0.402661I
2.11819 0.97237I 3.63398 + 0.68742I
u = 0.470704 0.402661I
2.11819 + 0.97237I 3.63398 0.68742I
8
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
103
+ 49u
102
+ ··· + 2u
2
+ 1
c
2
, c
6
u
103
u
102
+ ··· 2u
3
+ 1
c
3
u
103
+ u
102
+ ··· + 1790u + 193
c
4
, c
11
u
103
u
102
+ ··· 25u + 2
c
5
, c
10
u
103
+ u
102
+ ··· + 2u + 1
c
7
u
103
3u
102
+ ··· 1595u + 264
c
8
u
103
13u
102
+ ··· 20u + 1
c
9
u
103
+ 55u
102
+ ··· + 2u
2
1
c
12
u
103
+ 11u
102
+ ··· + 34220u + 1889
9
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
103
+ 11y
102
+ ··· 4y 1
c
2
, c
6
y
103
49y
102
+ ··· 2y
2
1
c
3
y
103
17y
102
+ ··· + 4028596y 37249
c
4
, c
11
y
103
81y
102
+ ··· + 933y 4
c
5
, c
10
y
103
+ 55y
102
+ ··· + 2y
2
1
c
7
y
103
+ 27y
102
+ ··· + 634249y 69696
c
8
y
103
y
102
+ ··· 180y 1
c
9
y
103
13y
102
+ ··· + 4y 1
c
12
y
103
+ 31y
102
+ ··· 195909780y 3568321
10