12a
0501
(K12a
0501
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 10 11 2 1 12 6 5 4
Solving Sequence
2,8
7 3 4 1 9 5 12 10 11 6
c
7
c
2
c
3
c
1
c
8
c
4
c
12
c
9
c
11
c
6
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
99
+ u
98
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 99 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
99
+ u
98
+ · · · + 2u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
8
+ u
6
+ u
4
+ 1
u
10
+ 2u
8
+ 3u
6
+ 2u
4
+ u
2
a
5
=
u
21
+ 4u
19
+ 9u
17
+ 12u
15
+ 12u
13
+ 10u
11
+ 9u
9
+ 6u
7
+ 3u
5
+ u
u
23
+ 5u
21
+ ··· + 2u
3
+ u
a
12
=
u
11
2u
9
2u
7
+ u
3
u
11
+ 3u
9
+ 4u
7
+ 3u
5
+ u
3
+ u
a
10
=
u
32
+ 7u
30
+ ··· + 2u
12
+ 1
u
32
8u
30
+ ··· 12u
8
4u
6
a
11
=
u
55
+ 12u
53
+ ··· + 5u
7
+ 2u
3
u
57
+ 13u
55
+ ··· + 2u
3
+ u
a
6
=
u
87
20u
85
+ ··· 5u
7
2u
3
u
87
+ 21u
85
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
97
4u
96
+ ··· 12u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
99
+ 47u
98
+ ··· 2u 1
c
2
, c
7
u
99
+ u
98
+ ··· + 2u + 1
c
3
u
99
u
98
+ ··· 2396u + 457
c
4
u
99
+ u
98
+ ··· 1366u + 521
c
5
, c
6
, c
10
u
99
u
98
+ ··· + 2u + 1
c
8
u
99
+ 5u
98
+ ··· + 1102u + 57
c
9
u
99
+ 21u
98
+ ··· + 218716u + 11327
c
11
u
99
+ 3u
98
+ ··· 14u 3
c
12
u
99
+ 11u
98
+ ··· + 14402u + 701
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
99
+ 11y
98
+ ··· + 2y 1
c
2
, c
7
y
99
+ 47y
98
+ ··· 2y 1
c
3
y
99
25y
98
+ ··· + 8147378y 208849
c
4
y
99
17y
98
+ ··· + 17086450y 271441
c
5
, c
6
, c
10
y
99
89y
98
+ ··· 2y 1
c
8
y
99
+ 19y
98
+ ··· + 191938y 3249
c
9
y
99
+ 31y
98
+ ··· 2952423990y 128300929
c
11
y
99
5y
98
+ ··· 218y 9
c
12
y
99
+ 23y
98
+ ··· 14304490y 491401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.469814 + 0.889386I
5.15974 3.45007I 0
u = 0.469814 0.889386I
5.15974 + 3.45007I 0
u = 0.148767 + 0.934892I
5.20598 3.73864I 0
u = 0.148767 0.934892I
5.20598 + 3.73864I 0
u = 0.242603 + 1.031670I
0.575080 + 0.871667I 0
u = 0.242603 1.031670I
0.575080 0.871667I 0
u = 0.650159 + 0.633663I
2.28389 + 9.47082I 0. 7.96667I
u = 0.650159 0.633663I
2.28389 9.47082I 0. + 7.96667I
u = 0.567446 + 0.934324I
3.16890 4.70879I 0
u = 0.567446 0.934324I
3.16890 + 4.70879I 0
u = 0.561044 + 0.947080I
2.13253 + 1.20620I 0
u = 0.561044 0.947080I
2.13253 1.20620I 0
u = 0.645418 + 0.621535I
3.08946 5.93342I 2.82989 + 7.73749I
u = 0.645418 0.621535I
3.08946 + 5.93342I 2.82989 7.73749I
u = 0.226159 + 1.083640I
3.58165 + 2.19221I 0
u = 0.226159 1.083640I
3.58165 2.19221I 0
u = 0.542662 + 0.972451I
0.53423 + 2.32067I 0
u = 0.542662 0.972451I
0.53423 2.32067I 0
u = 0.406038 + 1.044390I
4.93260 3.36503I 0
u = 0.406038 1.044390I
4.93260 + 3.36503I 0
u = 0.591230 + 0.646260I
4.43604 0.89349I 4.62087 + 3.00648I
u = 0.591230 0.646260I
4.43604 + 0.89349I 4.62087 3.00648I
u = 0.624098 + 0.600705I
1.62616 + 2.28184I 0. 2.63017I
u = 0.624098 0.600705I
1.62616 2.28184I 0. + 2.63017I
u = 0.559694 + 0.987397I
0.64836 + 2.17091I 0
u = 0.559694 0.987397I
0.64836 2.17091I 0
u = 0.646091 + 0.572926I
1.86865 + 2.54840I 1.88929 4.22472I
u = 0.646091 0.572926I
1.86865 2.54840I 1.88929 + 4.22472I
u = 0.244895 + 1.115700I
4.07787 + 1.55190I 0
u = 0.244895 1.115700I
4.07787 1.55190I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.232455 + 1.127000I
2.86423 5.33511I 0
u = 0.232455 1.127000I
2.86423 + 5.33511I 0
u = 0.653529 + 0.536527I
4.41016 + 0.73901I 5.92100 1.06674I
u = 0.653529 0.536527I
4.41016 0.73901I 5.92100 + 1.06674I
u = 0.668382 + 0.516240I
0.40853 4.10398I 0.48519 + 2.62326I
u = 0.668382 0.516240I
0.40853 + 4.10398I 0.48519 2.62326I
u = 0.231557 + 1.135340I
8.36784 + 8.86222I 0
u = 0.231557 1.135340I
8.36784 8.86222I 0
u = 0.564773 + 1.011980I
3.01104 5.49491I 0
u = 0.564773 1.011980I
3.01104 + 5.49491I 0
u = 0.259545 + 1.131170I
10.36610 + 0.21333I 0
u = 0.259545 1.131170I
10.36610 0.21333I 0
u = 0.333189 + 1.112900I
4.98807 1.63643I 0
u = 0.333189 1.112900I
4.98807 + 1.63643I 0
u = 0.768061 + 0.334118I
3.77803 + 11.62790I 3.49560 7.24187I
u = 0.768061 0.334118I
3.77803 11.62790I 3.49560 + 7.24187I
u = 0.761147 + 0.337791I
1.68726 8.05078I 1.00959 + 7.12608I
u = 0.761147 0.337791I
1.68726 + 8.05078I 1.00959 7.12608I
u = 0.570821 + 1.024070I
1.90077 + 8.91802I 0
u = 0.570821 1.024070I
1.90077 8.91802I 0
u = 0.353113 + 1.121300I
4.15696 + 5.26132I 0
u = 0.353113 1.121300I
4.15696 5.26132I 0
u = 0.323859 + 1.131150I
11.06550 0.52973I 0
u = 0.323859 1.131150I
11.06550 + 0.52973I 0
u = 0.736585 + 0.362308I
0.85605 + 4.62614I 0.34575 4.53704I
u = 0.736585 0.362308I
0.85605 4.62614I 0.34575 + 4.53704I
u = 0.745397 + 0.336513I
0.35085 + 4.23448I 1.71767 1.98109I
u = 0.745397 0.336513I
0.35085 4.23448I 1.71767 + 1.98109I
u = 0.705352 + 0.406363I
0.90793 1.98651I 0.17740 + 1.94504I
u = 0.705352 0.406363I
0.90793 + 1.98651I 0.17740 1.94504I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.355088 + 1.132520I
9.73220 8.58110I 0
u = 0.355088 1.132520I
9.73220 + 8.58110I 0
u = 0.715758 + 0.381198I
3.68933 1.31194I 5.02327 0.03733I
u = 0.715758 0.381198I
3.68933 + 1.31194I 5.02327 + 0.03733I
u = 0.746606 + 0.312147I
5.98648 2.63880I 6.16930 + 2.15328I
u = 0.746606 0.312147I
5.98648 + 2.63880I 6.16930 2.15328I
u = 0.500633 + 1.113340I
3.16752 + 2.36428I 0
u = 0.500633 1.113340I
3.16752 2.36428I 0
u = 0.564626 + 1.086520I
2.90289 2.89174I 0
u = 0.564626 1.086520I
2.90289 + 2.89174I 0
u = 0.496006 + 1.123710I
8.78413 + 0.80483I 0
u = 0.496006 1.123710I
8.78413 0.80483I 0
u = 0.517957 + 1.114130I
3.73484 5.93656I 0
u = 0.517957 1.114130I
3.73484 + 5.93656I 0
u = 0.564691 + 1.098850I
1.58780 + 6.21411I 0
u = 0.564691 1.098850I
1.58780 6.21411I 0
u = 0.520518 + 1.126860I
9.73594 + 8.31531I 0
u = 0.520518 1.126860I
9.73594 8.31531I 0
u = 0.567856 + 1.109820I
1.33445 9.58664I 0
u = 0.567856 1.109820I
1.33445 + 9.58664I 0
u = 0.564234 + 1.120740I
1.94479 9.19767I 0
u = 0.564234 1.120740I
1.94479 + 9.19767I 0
u = 0.557641 + 1.127410I
8.36659 + 7.57130I 0
u = 0.557641 1.127410I
8.36659 7.57130I 0
u = 0.569152 + 1.124680I
0.62462 + 13.07100I 0
u = 0.569152 1.124680I
0.62462 13.07100I 0
u = 0.570149 + 1.127840I
6.1128 16.6680I 0
u = 0.570149 1.127840I
6.1128 + 16.6680I 0
u = 0.690221 + 0.227322I
7.18528 3.70755I 7.70867 + 3.15852I
u = 0.690221 0.227322I
7.18528 + 3.70755I 7.70867 3.15852I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.237632 + 0.651195I
0.227540 + 1.212660I 2.71740 5.80081I
u = 0.237632 0.651195I
0.227540 1.212660I 2.71740 + 5.80081I
u = 0.645466 + 0.239263I
1.29221 + 1.42569I 4.26718 3.80181I
u = 0.645466 0.239263I
1.29221 1.42569I 4.26718 + 3.80181I
u = 0.663803 + 0.156320I
6.10535 5.18308I 6.43617 + 3.54727I
u = 0.663803 0.156320I
6.10535 + 5.18308I 6.43617 3.54727I
u = 0.630812 + 0.169069I
0.60523 + 1.97398I 2.11200 3.87352I
u = 0.630812 0.169069I
0.60523 1.97398I 2.11200 + 3.87352I
u = 0.517496
2.26066 3.53670
8
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
99
+ 47u
98
+ ··· 2u 1
c
2
, c
7
u
99
+ u
98
+ ··· + 2u + 1
c
3
u
99
u
98
+ ··· 2396u + 457
c
4
u
99
+ u
98
+ ··· 1366u + 521
c
5
, c
6
, c
10
u
99
u
98
+ ··· + 2u + 1
c
8
u
99
+ 5u
98
+ ··· + 1102u + 57
c
9
u
99
+ 21u
98
+ ··· + 218716u + 11327
c
11
u
99
+ 3u
98
+ ··· 14u 3
c
12
u
99
+ 11u
98
+ ··· + 14402u + 701
9
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
99
+ 11y
98
+ ··· + 2y 1
c
2
, c
7
y
99
+ 47y
98
+ ··· 2y 1
c
3
y
99
25y
98
+ ··· + 8147378y 208849
c
4
y
99
17y
98
+ ··· + 17086450y 271441
c
5
, c
6
, c
10
y
99
89y
98
+ ··· 2y 1
c
8
y
99
+ 19y
98
+ ··· + 191938y 3249
c
9
y
99
+ 31y
98
+ ··· 2952423990y 128300929
c
11
y
99
5y
98
+ ··· 218y 9
c
12
y
99
+ 23y
98
+ ··· 14304490y 491401
10