12a
0502
(K12a
0502
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 10 12 2 4 5 1 6 11
Solving Sequence
2,8
7 3 4 9 5 10 6 1 11 12
c
7
c
2
c
3
c
8
c
4
c
9
c
5
c
1
c
10
c
12
c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
45
u
44
+ ··· 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
45
u
44
+ · · · 3u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
10
=
u
12
+ 3u
10
+ 3u
8
2u
6
4u
4
u
2
+ 1
u
12
4u
10
6u
8
2u
6
+ 3u
4
+ 2u
2
a
6
=
u
15
4u
13
6u
11
+ 8u
7
+ 6u
5
2u
3
2u
u
15
+ 5u
13
+ 10u
11
+ 7u
9
4u
7
8u
5
2u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
11
=
u
20
+ 5u
18
+ 11u
16
+ 10u
14
7u
10
3u
8
2u
6
3u
4
u
2
+ 1
u
22
+ 6u
20
+ ··· + 4u
4
+ 3u
2
a
12
=
u
37
+ 10u
35
+ ··· 9u
5
+ u
u
39
+ 11u
37
+ ··· + 4u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
43
+ 4u
42
+ ··· + 20u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
45
+ 27u
44
+ ··· + 3u 1
c
2
, c
7
u
45
+ u
44
+ ··· 3u 1
c
3
, c
4
, c
5
c
8
, c
9
u
45
u
44
+ ··· + 11u 1
c
6
, c
11
u
45
+ u
44
+ ··· 3u 1
c
10
, c
12
u
45
+ 17u
44
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
45
17y
44
+ ··· + 55y 1
c
2
, c
7
y
45
+ 27y
44
+ ··· + 3y 1
c
3
, c
4
, c
5
c
8
, c
9
y
45
61y
44
+ ··· + 99y 1
c
6
, c
11
y
45
17y
44
+ ··· + 3y 1
c
10
, c
12
y
45
+ 23y
44
+ ··· 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.427459 + 0.911225I
0.85804 + 6.50089I 8.32802 9.97393I
u = 0.427459 0.911225I
0.85804 6.50089I 8.32802 + 9.97393I
u = 0.070383 + 1.016090I
1.72179 2.04025I 15.9831 + 3.0595I
u = 0.070383 1.016090I
1.72179 + 2.04025I 15.9831 3.0595I
u = 0.408478 + 0.865533I
1.39393 1.34908I 6.37203 + 4.08552I
u = 0.408478 0.865533I
1.39393 + 1.34908I 6.37203 4.08552I
u = 0.283223 + 1.012980I
3.30573 + 2.64852I 17.4700 5.8251I
u = 0.283223 1.012980I
3.30573 2.64852I 17.4700 + 5.8251I
u = 0.935027
15.9659 15.5090
u = 0.930328 + 0.019398I
11.70540 7.28312I 11.98320 + 4.60308I
u = 0.930328 0.019398I
11.70540 + 7.28312I 11.98320 4.60308I
u = 0.923476 + 0.012954I
10.00250 + 1.76256I 9.73819 0.10950I
u = 0.923476 0.012954I
10.00250 1.76256I 9.73819 + 0.10950I
u = 0.208200 + 0.833837I
0.603828 1.131350I 7.84077 + 5.39431I
u = 0.208200 0.833837I
0.603828 + 1.131350I 7.84077 5.39431I
u = 0.358679 + 1.138370I
4.13553 + 2.70881I 12.96314 3.74313I
u = 0.358679 1.138370I
4.13553 2.70881I 12.96314 + 3.74313I
u = 0.440538 + 1.122380I
3.51671 + 4.84200I 11.51709 4.49120I
u = 0.440538 1.122380I
3.51671 4.84200I 11.51709 + 4.49120I
u = 0.347703 + 1.175290I
5.60707 + 2.21593I 15.5378 1.9663I
u = 0.347703 1.175290I
5.60707 2.21593I 15.5378 + 1.9663I
u = 0.458823 + 1.138270I
4.76002 10.14720I 13.4545 + 9.2635I
u = 0.458823 1.138270I
4.76002 + 10.14720I 13.4545 9.2635I
u = 0.411367 + 1.171030I
9.02942 4.07847I 18.7916 + 4.0511I
u = 0.411367 1.171030I
9.02942 + 4.07847I 18.7916 4.0511I
u = 0.723185
5.63052 15.3580
u = 0.705456 + 0.119537I
1.83649 + 5.83150I 10.37227 5.87935I
u = 0.705456 0.119537I
1.83649 5.83150I 10.37227 + 5.87935I
u = 0.399313 + 0.551155I
2.22533 2.24395I 3.65717 + 3.92179I
u = 0.399313 0.551155I
2.22533 + 2.24395I 3.65717 3.92179I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.644426 + 0.110335I
0.671592 0.750914I 8.28728 + 0.79803I
u = 0.644426 0.110335I
0.671592 + 0.750914I 8.28728 0.79803I
u = 0.482704 + 1.275130I
13.8679 6.7706I 0
u = 0.482704 1.275130I
13.8679 + 6.7706I 0
u = 0.467992 + 1.280780I
13.9791 3.1742I 0
u = 0.467992 1.280780I
13.9791 + 3.1742I 0
u = 0.487764 + 1.277220I
15.5609 + 12.3367I 0
u = 0.487764 1.277220I
15.5609 12.3367I 0
u = 0.465467 + 1.286340I
15.7305 2.3351I 0
u = 0.465467 1.286340I
15.7305 + 2.3351I 0
u = 0.428207 + 0.461832I
2.03862 2.79869I 4.43613 + 3.54362I
u = 0.428207 0.461832I
2.03862 + 2.79869I 4.43613 3.54362I
u = 0.478105 + 1.284620I
19.5602 + 5.0232I 0
u = 0.478105 1.284620I
19.5602 5.0232I 0
u = 0.386025
0.813684 12.1660
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
45
+ 27u
44
+ ··· + 3u 1
c
2
, c
7
u
45
+ u
44
+ ··· 3u 1
c
3
, c
4
, c
5
c
8
, c
9
u
45
u
44
+ ··· + 11u 1
c
6
, c
11
u
45
+ u
44
+ ··· 3u 1
c
10
, c
12
u
45
+ 17u
44
+ ··· + 3u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
45
17y
44
+ ··· + 55y 1
c
2
, c
7
y
45
+ 27y
44
+ ··· + 3y 1
c
3
, c
4
, c
5
c
8
, c
9
y
45
61y
44
+ ··· + 99y 1
c
6
, c
11
y
45
17y
44
+ ··· + 3y 1
c
10
, c
12
y
45
+ 23y
44
+ ··· 17y 1
8