12a
0503
(K12a
0503
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 10 12 2 4 11 5 1 6
Solving Sequence
2,8
7 3 4 9 5
1,12
6 11 10
c
7
c
2
c
3
c
8
c
4
c
1
c
6
c
11
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
5
2u
3
+ b + 1, u
5
+ u
3
+ a 1, u
7
+ 2u
5
+ 2u
3
u
2
u 1i
I
u
2
= h−u
15
5u
13
u
12
12u
11
4u
10
15u
9
8u
8
10u
7
8u
6
2u
5
5u
4
+ u
3
2u
2
+ b 1,
u
15
+ 2u
14
+ 5u
13
+ 9u
12
+ 12u
11
+ 19u
10
+ 15u
9
+ 19u
8
+ 10u
7
+ 8u
6
+ 2u
5
2u
4
u
2
+ a + 2u,
u
16
+ u
15
+ 5u
14
+ 5u
13
+ 12u
12
+ 12u
11
+ 15u
10
+ 15u
9
+ 10u
8
+ 10u
7
+ 2u
6
+ 2u
5
+ u
2
+ 1i
I
u
3
= h−u
15
+ 2u
14
7u
13
+ 9u
12
18u
11
+ 16u
10
21u
9
+ 12u
8
8u
7
+ 2u
6
+ 4u
5
u
4
+ 2u
3
+ 2u
2
+ b 3u + 3,
u
15
3u
13
2u
12
2u
11
6u
10
+ 3u
9
6u
8
+ 4u
7
+ 4u
4
2u
3
+ 2u
2
+ 2a + u 1,
u
16
2u
15
+ 7u
14
10u
13
+ 18u
12
20u
11
+ 21u
10
18u
9
+ 8u
8
4u
7
4u
6
+ 4u
5
2u
4
+ 3u
2
3u + 2i
I
u
4
= hu
15
+ 3u
13
+ 4u
11
u
9
4u
7
4u
5
+ u
3
+ b 1, u
15
3u
13
4u
11
+ u
9
+ 4u
7
+ 4u
5
2u
3
+ a + 1,
u
16
+ u
15
+ 5u
14
+ 5u
13
+ 12u
12
+ 12u
11
+ 15u
10
+ 15u
9
+ 10u
8
+ 10u
7
+ 2u
6
+ 2u
5
+ u
2
+ 1i
I
u
5
= hb + u 1, a u + 2, u
2
u + 1i
I
u
6
= hu
5
u
2
a + 2u
3
u
2
+ b a + u 1, 2u
5
a u
5
4u
3
a + u
4
+ 2u
2
a 2u
3
+ a
2
au + 4u
2
+ 2a 2u + 2,
u
6
+ 2u
4
u
3
+ u
2
u 1i
I
u
7
= hb u 1, a + 2u + 1, u
2
+ 1i
* 7 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
5
2u
3
+ b + 1, u
5
+ u
3
+ a 1, u
7
+ 2u
5
+ 2u
3
u
2
u 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
5
+ u
4
u
3
+ u
2
u
u
5
u
4
+ u
3
2u
2
1
a
1
=
u
3
u
5
+ u
3
+ u
a
12
=
u
5
u
3
+ 1
u
5
+ 2u
3
1
a
6
=
u
6
u
4
+ u + 1
u
6
+ 2u
4
+ u
2
u
a
11
=
u
3
+ 1
u
3
+ u
2
+ u
a
10
=
u
6
+ u
5
u
4
u
2
+ 1
u
6
u
5
+ u
4
u
3
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
6
6u
4
6u
2
+ 6u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
11
u
7
+ 4u
6
+ 8u
5
+ 6u
4
5u
2
u 1
c
2
, c
5
, c
6
c
7
, c
10
, c
12
u
7
+ 2u
5
+ 2u
3
+ u
2
u + 1
c
3
, c
4
, c
8
u
7
5u
5
2u
4
+ 7u
3
+ 4u
2
+ 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
, c
11
y
7
+ 16y
5
+ 2y
4
+ 52y
3
13y
2
9y 1
c
2
, c
5
, c
6
c
7
, c
10
, c
12
y
7
+ 4y
6
+ 8y
5
+ 6y
4
5y
2
y 1
c
3
, c
4
, c
8
y
7
10y
6
+ 39y
5
74y
4
+ 65y
3
32y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.863824
a = 0.125557
b = 0.770135
4.43886 0.872100
u = 0.506221 + 1.104710I
a = 1.49617 + 1.94571I
b = 0.22746 2.44461I
5.20269 11.20360I 5.65627 + 10.71805I
u = 0.506221 1.104710I
a = 1.49617 1.94571I
b = 0.22746 + 2.44461I
5.20269 + 11.20360I 5.65627 10.71805I
u = 0.426442 + 0.491723I
a = 0.719469 0.043211I
b = 0.487688 + 0.192580I
0.805836 1.099860I 4.64625 + 4.74954I
u = 0.426442 0.491723I
a = 0.719469 + 0.043211I
b = 0.487688 0.192580I
0.805836 + 1.099860I 4.64625 4.74954I
u = 0.500751 + 1.264820I
a = 1.15286 + 2.51108I
b = 1.12484 3.58304I
15.5903 + 14.7635I 8.42603 8.80481I
u = 0.500751 1.264820I
a = 1.15286 2.51108I
b = 1.12484 + 3.58304I
15.5903 14.7635I 8.42603 + 8.80481I
5
II.
I
u
2
= h−u
15
5u
13
+· · ·+b1, u
15
+2u
14
+· · ·+a+2u, u
16
+u
15
+· · ·+u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
12
=
u
15
2u
14
+ ··· + u
2
2u
u
15
+ 5u
13
+ ··· + 2u
2
+ 1
a
6
=
u
15
+ 3u
13
+ 3u
11
3u
9
6u
7
2u
5
+ 3u
3
+ u 1
u
11
+ 3u
9
+ 4u
7
+ u
5
u
3
u
a
11
=
u
15
2u
14
+ ··· + u
4
u
u
8
+ 2u
6
+ 2u
4
a
10
=
u
15
2u
14
+ ··· u
2
u
u
10
2u
8
u
6
+ 2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
14
4u
13
16u
12
20u
11
32u
10
44u
9
28u
8
44u
7
12u
6
12u
5
+ 4u
4
+ 12u
3
4u
2
+ 4u 6
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
16
+ 9u
15
+ ··· + 2u + 1
c
2
, c
5
, c
7
c
10
u
16
u
15
+ ··· + u
2
+ 1
c
3
, c
4
, c
8
u
16
2u
15
+ ··· u + 2
c
6
, c
12
u
16
+ 2u
15
+ ··· + 3u + 2
c
11
u
16
+ 10u
15
+ ··· + 3u + 4
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
16
3y
15
+ ··· 2y + 1
c
2
, c
5
, c
7
c
10
y
16
+ 9y
15
+ ··· + 2y + 1
c
3
, c
4
, c
8
y
16
18y
15
+ ··· + 19y + 4
c
6
, c
12
y
16
+ 10y
15
+ ··· + 3y + 4
c
11
y
16
10y
15
+ ··· y + 16
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.892953 + 0.035958I
a = 0.652536 + 1.200890I
b = 0.02318 + 2.24381I
8.19036 + 4.73480I 2.47201 3.02289I
u = 0.892953 0.035958I
a = 0.652536 1.200890I
b = 0.02318 2.24381I
8.19036 4.73480I 2.47201 + 3.02289I
u = 0.458901 + 0.734878I
a = 0.104273 0.435411I
b = 0.247757 + 0.757374I
0.85997 1.95072I 3.06114 + 4.17042I
u = 0.458901 0.734878I
a = 0.104273 + 0.435411I
b = 0.247757 0.757374I
0.85997 + 1.95072I 3.06114 4.17042I
u = 0.379593 + 1.079580I
a = 0.56037 2.03187I
b = 1.36347 + 1.32712I
7.04324 3.37292I 8.93248 + 5.20888I
u = 0.379593 1.079580I
a = 0.56037 + 2.03187I
b = 1.36347 1.32712I
7.04324 + 3.37292I 8.93248 5.20888I
u = 0.469252 + 1.053160I
a = 0.371270 0.561834I
b = 0.161095 + 0.362888I
2.68724 + 6.60937I 2.51664 7.40663I
u = 0.469252 1.053160I
a = 0.371270 + 0.561834I
b = 0.161095 0.362888I
2.68724 6.60937I 2.51664 + 7.40663I
u = 0.190701 + 0.810384I
a = 0.33485 2.32194I
b = 0.569648 + 0.391218I
3.86698 + 1.08438I 3.75949 5.90127I
u = 0.190701 0.810384I
a = 0.33485 + 2.32194I
b = 0.569648 0.391218I
3.86698 1.08438I 3.75949 + 5.90127I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.487539 + 1.254270I
a = 0.652357 0.643137I
b = 0.736189 + 0.110556I
11.8837 9.6751I 5.50822 + 5.97678I
u = 0.487539 1.254270I
a = 0.652357 + 0.643137I
b = 0.736189 0.110556I
11.8837 + 9.6751I 5.50822 5.97678I
u = 0.469746 + 1.263010I
a = 0.70256 1.98263I
b = 1.83074 + 2.27175I
16.0195 + 4.8597I 9.14726 3.11789I
u = 0.469746 1.263010I
a = 0.70256 + 1.98263I
b = 1.83074 2.27175I
16.0195 4.8597I 9.14726 + 3.11789I
u = 0.589289 + 0.270476I
a = 0.998682 + 0.324734I
b = 0.232766 + 1.375450I
0.51702 2.45923I 1.27496 + 3.25382I
u = 0.589289 0.270476I
a = 0.998682 0.324734I
b = 0.232766 1.375450I
0.51702 + 2.45923I 1.27496 3.25382I
10
III.
I
u
3
= h−u
15
+2u
14
+· · ·+b+3, u
15
3u
13
+· · ·+2a1, u
16
2u
15
+· · ·−3u+2i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
12
=
1
2
u
15
+
3
2
u
13
+ ···
1
2
u +
1
2
u
15
2u
14
+ ··· + 3u 3
a
6
=
1
2
u
15
+ 2u
14
+ ···
3
2
u +
3
2
u
15
2u
14
+ ··· + 2u 1
a
11
=
1
2
u
15
2u
14
+ ··· +
5
2
u
3
2
u
15
+ 2u
14
+ ··· 2u + 1
a
10
=
1
2
u
15
3
2
u
13
+ ··· +
1
2
u +
1
2
u
15
+ 2u
14
+ ··· 2u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
13
+ 16u
11
+ 24u
9
+ 4u
7
20u
5
12u
3
+ 4u 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 10u
15
+ ··· + 3u + 4
c
2
, c
7
u
16
+ 2u
15
+ ··· + 3u + 2
c
3
, c
4
, c
8
u
16
2u
15
+ ··· u + 2
c
5
, c
6
, c
10
c
12
u
16
u
15
+ ··· + u
2
+ 1
c
9
, c
11
u
16
+ 9u
15
+ ··· + 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
10y
15
+ ··· y + 16
c
2
, c
7
y
16
+ 10y
15
+ ··· + 3y + 4
c
3
, c
4
, c
8
y
16
18y
15
+ ··· + 19y + 4
c
5
, c
6
, c
10
c
12
y
16
+ 9y
15
+ ··· + 2y + 1
c
9
, c
11
y
16
3y
15
+ ··· 2y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.402991 + 0.968083I
a = 0.222795 0.609931I
b = 0.059233 + 0.569202I
0.51702 2.45923I 1.27496 + 3.25382I
u = 0.402991 0.968083I
a = 0.222795 + 0.609931I
b = 0.059233 0.569202I
0.51702 + 2.45923I 1.27496 3.25382I
u = 0.921586 + 0.049492I
a = 0.594426 + 1.196160I
b = 0.09325 + 2.32148I
11.8837 9.6751I 5.50822 + 5.97678I
u = 0.921586 0.049492I
a = 0.594426 1.196160I
b = 0.09325 2.32148I
11.8837 + 9.6751I 5.50822 5.97678I
u = 0.059705 + 1.152710I
a = 0.23551 1.67559I
b = 0.10924 + 1.44246I
3.86698 1.08438I 3.75949 + 5.90127I
u = 0.059705 1.152710I
a = 0.23551 + 1.67559I
b = 0.10924 1.44246I
3.86698 + 1.08438I 3.75949 5.90127I
u = 0.270509 + 1.207500I
a = 0.55626 1.86816I
b = 0.82968 + 1.87098I
7.04324 + 3.37292I 8.93248 5.20888I
u = 0.270509 1.207500I
a = 0.55626 + 1.86816I
b = 0.82968 1.87098I
7.04324 3.37292I 8.93248 + 5.20888I
u = 0.724264 + 0.230405I
a = 0.784571 + 0.654294I
b = 0.31772 + 1.62349I
2.68724 + 6.60937I 2.51664 7.40663I
u = 0.724264 0.230405I
a = 0.784571 0.654294I
b = 0.31772 1.62349I
2.68724 6.60937I 2.51664 + 7.40663I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.507077 + 0.543596I
a = 0.458679 0.248786I
b = 0.339347 + 0.997289I
0.85997 1.95072I 3.06114 + 4.17042I
u = 0.507077 0.543596I
a = 0.458679 + 0.248786I
b = 0.339347 0.997289I
0.85997 + 1.95072I 3.06114 4.17042I
u = 0.465530 + 1.245910I
a = 0.629795 0.668340I
b = 0.723472 + 0.198002I
8.19036 + 4.73480I 2.47201 3.02289I
u = 0.465530 1.245910I
a = 0.629795 + 0.668340I
b = 0.723472 0.198002I
8.19036 4.73480I 2.47201 + 3.02289I
u = 0.443866 + 1.287090I
a = 0.70921 1.95738I
b = 1.67108 + 2.40426I
16.0195 4.8597I 9.14726 + 3.11789I
u = 0.443866 1.287090I
a = 0.70921 + 1.95738I
b = 1.67108 2.40426I
16.0195 + 4.8597I 9.14726 3.11789I
15
IV. I
u
4
= hu
15
+ 3u
13
+ 4u
11
u
9
4u
7
4u
5
+ u
3
+ b 1, u
15
3u
13
+
· · · + a + 1, u
16
+ u
15
+ · · · + u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
12
=
u
15
+ 3u
13
+ 4u
11
u
9
4u
7
4u
5
+ 2u
3
1
u
15
3u
13
4u
11
+ u
9
+ 4u
7
+ 4u
5
u
3
+ 1
a
6
=
u
15
2u
14
+ ··· u
2
u
u
15
+ 2u
14
+ ··· + u + 1
a
11
=
u
15
+ 3u
13
+ 4u
11
u
9
4u
7
3u
5
+ 2u
3
1
u
15
3u
13
4u
11
+ u
9
+ 5u
7
+ 5u
5
+ 1
a
10
=
u
15
+ 3u
13
+ 4u
11
u
10
u
9
3u
8
4u
7
4u
6
4u
5
u
4
+ u
3
+ u
2
u
2u
13
+ 8u
11
+ ··· u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
14
4u
13
16u
12
20u
11
32u
10
44u
9
28u
8
44u
7
12u
6
12u
5
+ 4u
4
+ 12u
3
4u
2
+ 4u 6
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
16
+ 9u
15
+ ··· + 2u + 1
c
2
, c
6
, c
7
c
12
u
16
u
15
+ ··· + u
2
+ 1
c
3
, c
4
, c
8
u
16
2u
15
+ ··· u + 2
c
5
, c
10
u
16
+ 2u
15
+ ··· + 3u + 2
c
9
u
16
+ 10u
15
+ ··· + 3u + 4
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
16
3y
15
+ ··· 2y + 1
c
2
, c
6
, c
7
c
12
y
16
+ 9y
15
+ ··· + 2y + 1
c
3
, c
4
, c
8
y
16
18y
15
+ ··· + 19y + 4
c
5
, c
10
y
16
+ 10y
15
+ ··· + 3y + 4
c
9
y
16
10y
15
+ ··· y + 16
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.892953 + 0.035958I
a = 0.1015470 + 0.0314751I
b = 0.810093 + 0.054493I
8.19036 + 4.73480I 2.47201 3.02289I
u = 0.892953 0.035958I
a = 0.1015470 0.0314751I
b = 0.810093 0.054493I
8.19036 4.73480I 2.47201 + 3.02289I
u = 0.458901 + 0.734878I
a = 1.317400 + 0.329697I
b = 0.670552 0.262290I
0.85997 1.95072I 3.06114 + 4.17042I
u = 0.458901 0.734878I
a = 1.317400 0.329697I
b = 0.670552 + 0.262290I
0.85997 + 1.95072I 3.06114 4.17042I
u = 0.379593 + 1.079580I
a = 2.22885 + 2.07396I
b = 0.95631 2.86552I
7.04324 3.37292I 8.93248 + 5.20888I
u = 0.379593 1.079580I
a = 2.22885 2.07396I
b = 0.95631 + 2.86552I
7.04324 + 3.37292I 8.93248 5.20888I
u = 0.469252 + 1.053160I
a = 1.74058 + 1.75441I
b = 0.28250 2.22682I
2.68724 + 6.60937I 2.51664 7.40663I
u = 0.469252 1.053160I
a = 1.74058 1.75441I
b = 0.28250 + 2.22682I
2.68724 6.60937I 2.51664 + 7.40663I
u = 0.190701 + 0.810384I
a = 2.50371 1.26517I
b = 2.13493 + 0.82139I
3.86698 + 1.08438I 3.75949 5.90127I
u = 0.190701 0.810384I
a = 2.50371 + 1.26517I
b = 2.13493 0.82139I
3.86698 1.08438I 3.75949 + 5.90127I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.487539 + 1.254270I
a = 1.21664 + 2.51902I
b = 0.96843 3.59781I
11.8837 9.6751I 5.50822 + 5.97678I
u = 0.487539 1.254270I
a = 1.21664 2.51902I
b = 0.96843 + 3.59781I
11.8837 + 9.6751I 5.50822 5.97678I
u = 0.469746 + 1.263010I
a = 1.23893 + 2.59409I
b = 0.90542 3.77274I
16.0195 + 4.8597I 9.14726 3.11789I
u = 0.469746 1.263010I
a = 1.23893 2.59409I
b = 0.90542 + 3.77274I
16.0195 4.8597I 9.14726 + 3.11789I
u = 0.589289 + 0.270476I
a = 0.381211 + 0.088717I
b = 0.456516 + 0.173272I
0.51702 2.45923I 1.27496 + 3.25382I
u = 0.589289 0.270476I
a = 0.381211 0.088717I
b = 0.456516 0.173272I
0.51702 + 2.45923I 1.27496 3.25382I
20
V. I
u
5
= hb + u 1, a u + 2, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u 1
a
3
=
u
u 1
a
4
=
1
u 1
a
9
=
u
u
a
5
=
2
u 2
a
1
=
1
0
a
12
=
u 2
u + 1
a
6
=
u
u
a
11
=
1
u + 1
a
10
=
2u 1
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u + 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
2
+ u + 1
c
3
, c
4
, c
8
u
2
u + 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y
2
+ y + 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.50000 + 0.86603I
b = 0.500000 0.866025I
6.08965I 0. 10.39230I
u = 0.500000 0.866025I
a = 1.50000 0.86603I
b = 0.500000 + 0.866025I
6.08965I 0. + 10.39230I
24
VI. I
u
6
= hu
5
u
2
a + 2u
3
u
2
+ b a + u 1, 2u
5
a u
5
+ · · · + 2a +
2, u
6
+ 2u
4
u
3
+ u
2
u 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
4
u
3
+ u
2
u
u
3
+ u + 1
a
5
=
u
4
u
2
+ 1
u
3
u 1
a
1
=
u
3
u
5
+ u
3
+ u
a
12
=
a
u
5
+ u
2
a 2u
3
+ u
2
+ a u + 1
a
6
=
u
5
a + u
5
+ 2u
3
a u
4
u
2
a + 2u
3
4u
2
a + 2u 1
u
3
a u
4
1
a
11
=
u
4
a u
5
+ a
u
4
a u
3
a u
4
+ u
2
a 2u
3
au 2u + 1
a
10
=
u
5
+ u
2
a + 2u
3
u
2
u 1
u
4
a u
5
+ u
2
a 4u
3
+ u
2
+ a 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
11
(u
6
+ 4u
5
+ 6u
4
+ u
3
5u
2
3u + 1)
2
c
2
, c
5
, c
6
c
7
, c
10
, c
12
(u
6
+ 2u
4
+ u
3
+ u
2
+ u 1)
2
c
3
, c
4
, c
8
(u
2
+ u 1)
6
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
, c
11
(y
6
4y
5
+ 18y
4
35y
3
+ 43y
2
19y + 1)
2
c
2
, c
5
, c
6
c
7
, c
10
, c
12
(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)
2
c
3
, c
4
, c
8
(y
2
3y + 1)
6
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.896795
a = 0.66668 + 1.26617I
b = 0.08778 + 2.28447I
12.1725 6.00000
u = 0.896795
a = 0.66668 1.26617I
b = 0.08778 2.28447I
12.1725 6.00000
u = 0.248003 + 1.088360I
a = 0.296970 0.873464I
b = 0.309017 + 0.820596I
4.27683 6.00000
u = 0.248003 + 1.088360I
a = 0.44704 1.96182I
b = 0.80502 + 1.35611I
4.27683 6.00000
u = 0.248003 1.088360I
a = 0.296970 + 0.873464I
b = 0.309017 0.820596I
4.27683 6.00000
u = 0.248003 1.088360I
a = 0.44704 + 1.96182I
b = 0.80502 1.35611I
4.27683 6.00000
u = 0.448397 + 1.266170I
a = 0.648271 0.701773I
b = 0.809017 + 0.247864I
12.1725 6.00000
u = 0.448397 + 1.266170I
a = 0.69692 1.96794I
b = 1.70581 + 2.28447I
12.1725 6.00000
u = 0.448397 1.266170I
a = 0.648271 + 0.701773I
b = 0.809017 0.247864I
12.1725 6.00000
u = 0.448397 1.266170I
a = 0.69692 + 1.96794I
b = 1.70581 2.28447I
12.1725 6.00000
28
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.496006
a = 1.76810 + 1.08835I
b = 0.186989 + 1.356110I
4.27683 6.00000
u = 0.496006
a = 1.76810 1.08835I
b = 0.186989 1.356110I
4.27683 6.00000
29
VII. I
u
7
= hb u 1, a + 2u + 1, u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
1
a
3
=
u
0
a
4
=
u
0
a
9
=
1
0
a
5
=
u
0
a
1
=
u
u
a
12
=
2u 1
u + 1
a
6
=
u 1
u
a
11
=
u 1
1
a
10
=
u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
11
(u 1)
2
c
2
, c
5
, c
6
c
7
, c
10
, c
12
u
2
+ 1
c
3
, c
4
, c
8
u
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
, c
11
(y 1)
2
c
2
, c
5
, c
6
c
7
, c
10
, c
12
(y + 1)
2
c
3
, c
4
, c
8
y
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000 2.00000I
b = 1.00000 + 1.00000I
4.93480 12.0000
u = 1.000000I
a = 1.00000 + 2.00000I
b = 1.00000 1.00000I
4.93480 12.0000
33
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
9
, c
11
(u 1)
2
(u
2
+ u + 1)(u
6
+ 4u
5
+ 6u
4
+ u
3
5u
2
3u + 1)
2
· (u
7
+ 4u
6
+ 8u
5
+ 6u
4
5u
2
u 1)(u
16
+ 9u
15
+ ··· + 2u + 1)
2
· (u
16
+ 10u
15
+ ··· + 3u + 4)
c
2
, c
5
, c
6
c
7
, c
10
, c
12
(u
2
+ 1)(u
2
+ u + 1)(u
6
+ 2u
4
+ u
3
+ u
2
+ u 1)
2
· (u
7
+ 2u
5
+ 2u
3
+ u
2
u + 1)(u
16
u
15
+ ··· + u
2
+ 1)
2
· (u
16
+ 2u
15
+ ··· + 3u + 2)
c
3
, c
4
, c
8
u
2
(u
2
u + 1)(u
2
+ u 1)
6
(u
7
5u
5
2u
4
+ 7u
3
+ 4u
2
+ 4)
· (u
16
2u
15
+ ··· u + 2)
3
34
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
9
, c
11
(y 1)
2
(y
2
+ y + 1)(y
6
4y
5
+ 18y
4
35y
3
+ 43y
2
19y + 1)
2
· (y
7
+ 16y
5
+ ··· 9y 1)(y
16
10y
15
+ ··· y + 16)
· (y
16
3y
15
+ ··· 2y + 1)
2
c
2
, c
5
, c
6
c
7
, c
10
, c
12
(y + 1)
2
(y
2
+ y + 1)(y
6
+ 4y
5
+ 6y
4
+ y
3
5y
2
3y + 1)
2
· (y
7
+ 4y
6
+ 8y
5
+ 6y
4
5y
2
y 1)(y
16
+ 9y
15
+ ··· + 2y + 1)
2
· (y
16
+ 10y
15
+ ··· + 3y + 4)
c
3
, c
4
, c
8
y
2
(y
2
3y + 1)
6
(y
2
+ y + 1)
· (y
7
10y
6
+ 39y
5
74y
4
+ 65y
3
32y 16)
· (y
16
18y
15
+ ··· + 19y + 4)
3
35