12a
0504
(K12a
0504
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 10 12 2 5 4 1 6 11
Solving Sequence
4,9
5 10
1,6
11 8 3 2 7 12
c
4
c
9
c
5
c
10
c
8
c
3
c
1
c
7
c
12
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−7.83895 × 10
14
u
55
+ 1.45886 × 10
14
u
54
+ ··· + 3.67417 × 10
15
b 1.23817 × 10
16
,
9.64057 × 10
16
u
55
1.02861 × 10
17
u
54
+ ··· + 1.46967 × 10
16
a + 5.86299 × 10
17
, u
56
u
55
+ ··· + 12u + 1i
I
u
2
= h−u
8
2u
6
2u
4
+ b, u
6
u
4
+ a + 1, u
24
+ 8u
22
+ ··· + 2u 1i
I
u
3
= hb + 1, a
2
au 2a + u, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−7.84×10
14
u
55
+1.46×10
14
u
54
+· · ·+3.67×10
15
b1.24×10
16
, 9.64×
10
16
u
55
1.03×10
17
u
54
+· · ·+1.47×10
16
a+5.86×10
17
, u
56
u
55
+· · ·+12u+1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
a
1
=
6.55969u
55
+ 6.99890u
54
+ ··· 234.424u 39.8933
0.213353u
55
0.0397057u
54
+ ··· + 14.8733u + 3.36993
a
6
=
u
4
u
2
+ 1
u
4
+ 2u
2
a
11
=
7.30147u
55
+ 8.14558u
54
+ ··· 237.184u 48.1301
0.805092u
55
+ 0.773921u
54
+ ··· 22.7624u 4.24178
a
8
=
u
u
3
+ u
a
3
=
u
4
u
2
+ 1
u
6
2u
4
u
2
a
2
=
6.66140u
55
+ 7.11337u
54
+ ··· 239.072u 41.8370
0.0587147u
55
0.0808551u
54
+ ··· + 16.5555u + 3.49674
a
7
=
2.86544u
55
+ 2.88023u
54
+ ··· 100.769u 25.4493
0.943701u
55
+ 1.04541u
54
+ ··· 36.4118u 6.67618
a
12
=
6.53973u
55
+ 7.49680u
54
+ ··· 215.901u 45.3003
1.08495u
55
+ 0.999699u
54
+ ··· 25.8687u 4.36852
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
14833210943177139
3674173150903357
u
55
+
13598122062567921
3674173150903357
u
54
+···−
427855008730402692
3674173150903357
u
136869864770758331
3674173150903357
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
+ 29u
55
+ ··· + 6u + 1
c
2
, c
7
u
56
+ u
55
+ ··· 2u + 1
c
3
, c
5
u
56
+ 2u
55
+ ··· 464u + 32
c
4
, c
8
, c
9
u
56
+ u
55
+ ··· 12u + 1
c
6
, c
11
u
56
2u
55
+ ··· 3u + 2
c
10
, c
12
u
56
+ 20u
55
+ ··· 19u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
56
+ y
55
+ ··· + 78y + 1
c
2
, c
7
y
56
+ 29y
55
+ ··· + 6y + 1
c
3
, c
5
y
56
42y
55
+ ··· 81664y + 1024
c
4
, c
8
, c
9
y
56
+ 49y
55
+ ··· 90y + 1
c
6
, c
11
y
56
20y
55
+ ··· + 19y + 4
c
10
, c
12
y
56
+ 32y
55
+ ··· 33y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.889558 + 0.109792I
a = 0.480562 0.208021I
b = 1.39404 1.26418I
5.62716 11.26020I 12.2899 + 8.2594I
u = 0.889558 0.109792I
a = 0.480562 + 0.208021I
b = 1.39404 + 1.26418I
5.62716 + 11.26020I 12.2899 8.2594I
u = 0.185587 + 0.860066I
a = 1.024400 + 0.085895I
b = 0.0405782 + 0.0105793I
1.79150 2.20957I 3.12470 + 4.68768I
u = 0.185587 0.860066I
a = 1.024400 0.085895I
b = 0.0405782 0.0105793I
1.79150 + 2.20957I 3.12470 4.68768I
u = 0.861042 + 0.114062I
a = 0.614579 + 0.107443I
b = 1.091830 + 0.875986I
4.20562 + 5.74688I 10.33539 3.77278I
u = 0.861042 0.114062I
a = 0.614579 0.107443I
b = 1.091830 0.875986I
4.20562 5.74688I 10.33539 + 3.77278I
u = 0.860629 + 0.049985I
a = 0.413499 + 0.208652I
b = 1.88213 0.20431I
10.13050 4.55338I 16.9525 + 3.5771I
u = 0.860629 0.049985I
a = 0.413499 0.208652I
b = 1.88213 + 0.20431I
10.13050 + 4.55338I 16.9525 3.5771I
u = 0.805415 + 0.008477I
a = 0.690320 0.645957I
b = 1.58304 0.97985I
6.37248 2.26636I 13.85594 + 1.85600I
u = 0.805415 0.008477I
a = 0.690320 + 0.645957I
b = 1.58304 + 0.97985I
6.37248 + 2.26636I 13.85594 1.85600I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.348712 + 1.145540I
a = 1.46239 + 0.70535I
b = 0.639092 + 0.118002I
0.79022 2.20219I 0
u = 0.348712 1.145540I
a = 1.46239 0.70535I
b = 0.639092 0.118002I
0.79022 + 2.20219I 0
u = 0.787481 + 0.037354I
a = 0.799208 0.381112I
b = 1.144440 0.535672I
4.76193 + 2.90653I 11.38592 3.37449I
u = 0.787481 0.037354I
a = 0.799208 + 0.381112I
b = 1.144440 + 0.535672I
4.76193 2.90653I 11.38592 + 3.37449I
u = 0.020700 + 1.221230I
a = 0.733753 + 1.108360I
b = 0.060419 0.425354I
1.78925 1.40742I 0
u = 0.020700 1.221230I
a = 0.733753 1.108360I
b = 0.060419 + 0.425354I
1.78925 + 1.40742I 0
u = 0.638508 + 0.407850I
a = 0.739741 0.354164I
b = 0.589927 0.778722I
1.25611 + 6.62961I 7.45851 9.59429I
u = 0.638508 0.407850I
a = 0.739741 + 0.354164I
b = 0.589927 + 0.778722I
1.25611 6.62961I 7.45851 + 9.59429I
u = 0.273524 + 1.225730I
a = 0.725644 0.884759I
b = 0.356539 + 0.597946I
2.31046 2.56681I 0
u = 0.273524 1.225730I
a = 0.725644 + 0.884759I
b = 0.356539 0.597946I
2.31046 + 2.56681I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.577497 + 0.456433I
a = 0.431719 + 0.400148I
b = 0.359836 + 0.827641I
1.72923 1.31419I 5.78155 + 3.99484I
u = 0.577497 0.456433I
a = 0.431719 0.400148I
b = 0.359836 0.827641I
1.72923 + 1.31419I 5.78155 3.99484I
u = 0.142801 + 1.272040I
a = 0.036090 + 1.373970I
b = 0.474215 0.667513I
0.98358 + 4.96048I 0
u = 0.142801 1.272040I
a = 0.036090 1.373970I
b = 0.474215 + 0.667513I
0.98358 4.96048I 0
u = 0.354849 + 1.262830I
a = 1.64828 + 0.90921I
b = 0.868433 0.073319I
2.48382 1.91013I 0
u = 0.354849 1.262830I
a = 1.64828 0.90921I
b = 0.868433 + 0.073319I
2.48382 + 1.91013I 0
u = 0.058481 + 1.310540I
a = 0.153203 1.271200I
b = 0.086213 + 0.977970I
4.34759 2.11198I 0
u = 0.058481 1.310540I
a = 0.153203 + 1.271200I
b = 0.086213 0.977970I
4.34759 + 2.11198I 0
u = 0.366060 + 1.267250I
a = 1.13826 + 1.74843I
b = 1.48110 0.89517I
2.57041 + 4.26504I 0
u = 0.366060 1.267250I
a = 1.13826 1.74843I
b = 1.48110 + 0.89517I
2.57041 4.26504I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.346195 + 1.296780I
a = 0.98892 1.05718I
b = 0.612467 + 0.642893I
0.59522 + 6.99644I 0
u = 0.346195 1.296780I
a = 0.98892 + 1.05718I
b = 0.612467 0.642893I
0.59522 6.99644I 0
u = 0.390452 + 1.308290I
a = 1.15405 + 1.99315I
b = 1.52261 1.10872I
5.88872 9.04102I 0
u = 0.390452 1.308290I
a = 1.15405 1.99315I
b = 1.52261 + 1.10872I
5.88872 + 9.04102I 0
u = 0.335008 + 1.329430I
a = 0.32616 2.08418I
b = 1.05385 + 2.07205I
3.44326 5.11122I 0
u = 0.335008 1.329430I
a = 0.32616 + 2.08418I
b = 1.05385 2.07205I
3.44326 + 5.11122I 0
u = 0.359700 + 1.337340I
a = 0.49062 + 2.42131I
b = 1.59665 2.26221I
2.15359 + 10.68620I 0
u = 0.359700 1.337340I
a = 0.49062 2.42131I
b = 1.59665 + 2.26221I
2.15359 10.68620I 0
u = 0.102530 + 1.394500I
a = 0.964979 + 0.507457I
b = 1.93891 0.37473I
8.29178 4.25641I 0
u = 0.102530 1.394500I
a = 0.964979 0.507457I
b = 1.93891 + 0.37473I
8.29178 + 4.25641I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.066007 + 1.396890I
a = 0.810504 0.885178I
b = 1.69144 + 0.97965I
8.59831 1.41502I 0
u = 0.066007 1.396890I
a = 0.810504 + 0.885178I
b = 1.69144 0.97965I
8.59831 + 1.41502I 0
u = 0.381595 + 1.347340I
a = 0.25782 2.13685I
b = 0.98568 + 2.09120I
0.38459 + 10.21060I 0
u = 0.381595 1.347340I
a = 0.25782 + 2.13685I
b = 0.98568 2.09120I
0.38459 10.21060I 0
u = 0.149156 + 1.399160I
a = 0.56575 1.37488I
b = 1.40497 + 1.43686I
7.66294 3.69333I 0
u = 0.149156 1.399160I
a = 0.56575 + 1.37488I
b = 1.40497 1.43686I
7.66294 + 3.69333I 0
u = 0.397706 + 1.350820I
a = 0.30333 + 2.52636I
b = 1.42412 2.37758I
1.0399 15.8746I 0
u = 0.397706 1.350820I
a = 0.30333 2.52636I
b = 1.42412 + 2.37758I
1.0399 + 15.8746I 0
u = 0.181217 + 1.400850I
a = 0.752908 + 1.133180I
b = 1.76932 0.99764I
7.06490 + 9.40242I 0
u = 0.181217 1.400850I
a = 0.752908 1.133180I
b = 1.76932 + 0.99764I
7.06490 9.40242I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.502604 + 0.150960I
a = 1.119810 + 0.498449I
b = 0.406755 0.670085I
3.33096 + 2.74558I 16.7867 5.9807I
u = 0.502604 0.150960I
a = 1.119810 0.498449I
b = 0.406755 + 0.670085I
3.33096 2.74558I 16.7867 + 5.9807I
u = 0.268159 + 0.343396I
a = 0.410785 0.686556I
b = 0.387300 + 0.356715I
0.578536 1.108330I 7.65763 + 5.69104I
u = 0.268159 0.343396I
a = 0.410785 + 0.686556I
b = 0.387300 0.356715I
0.578536 + 1.108330I 7.65763 5.69104I
u = 0.145927 + 0.017514I
a = 3.33046 6.22037I
b = 1.013530 + 0.299730I
1.72221 + 2.04047I 15.8987 3.0752I
u = 0.145927 0.017514I
a = 3.33046 + 6.22037I
b = 1.013530 0.299730I
1.72221 2.04047I 15.8987 + 3.0752I
10
II. I
u
2
= h−u
8
2u
6
2u
4
+ b, u
6
u
4
+ a + 1, u
24
+ 8u
22
+ · · · + 2u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
a
1
=
u
6
+ u
4
1
u
8
+ 2u
6
+ 2u
4
a
6
=
u
4
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
15
4u
13
6u
11
2u
9
+ 4u
7
+ 4u
5
2u
u
17
5u
15
11u
13
12u
11
5u
9
+ 2u
7
+ 2u
5
+ u
a
8
=
u
u
3
+ u
a
3
=
u
4
u
2
+ 1
u
6
2u
4
u
2
a
2
=
u
2
1
u
4
a
7
=
u
3
u
5
+ u
3
+ u
a
12
=
u
22
u
21
+ ··· 2u
2
2u
u
23
+ u
22
+ ··· 2u
3
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
18
24u
16
60u
14
68u
12
12u
10
4u
9
+ 48u
8
12u
7
+
36u
6
12u
5
4u
4
+ 4u
3
8u
2
+ 8u 14
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 16u
23
+ ··· 4u + 1
c
2
, c
4
, c
7
c
8
, c
9
u
24
+ 8u
22
+ ··· 2u 1
c
3
, c
5
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
3
c
6
, c
11
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
3
c
10
, c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
16y
23
+ ··· 44y + 1
c
2
, c
4
, c
7
c
8
, c
9
y
24
+ 16y
23
+ ··· 4y + 1
c
3
, c
5
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
c
6
, c
11
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
c
10
, c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.199878 + 1.058230I
a = 0.692366 0.490639I
b = 0.755093 + 0.822738I
0.845036 11.89446 + 0.I
u = 0.199878 1.058230I
a = 0.692366 + 0.490639I
b = 0.755093 0.822738I
0.845036 11.89446 + 0.I
u = 0.817018 + 0.106623I
a = 0.377081 0.448378I
b = 1.35371 1.07975I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.817018 0.106623I
a = 0.377081 + 0.448378I
b = 1.35371 + 1.07975I
2.37968 6.44354I 9.42845 + 5.29417I
u = 0.819879
a = 0.244409
b = 1.71535
6.50273 13.8640
u = 0.431691 + 0.692037I
a = 0.983121 + 0.409487I
b = 0.014801 + 0.629205I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.431691 0.692037I
a = 0.983121 0.409487I
b = 0.014801 0.629205I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.427601 + 1.146400I
a = 1.133070 0.604082I
b = 0.553659 + 0.206534I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.427601 1.146400I
a = 1.133070 + 0.604082I
b = 0.553659 0.206534I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.761196 + 0.098439I
a = 0.551326 + 0.313328I
b = 0.959472 + 0.729841I
1.04066 1.13123I 7.41522 + 0.51079I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.761196 0.098439I
a = 0.551326 0.313328I
b = 0.959472 0.729841I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.461944 + 1.169380I
a = 1.66867 + 0.56200I
b = 0.853651 + 0.302978I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.461944 1.169380I
a = 1.66867 0.56200I
b = 0.853651 0.302978I
2.37968 6.44354I 9.42845 + 5.29417I
u = 0.028576 + 1.262710I
a = 2.48788 0.31944I
b = 3.39460 + 0.52702I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.028576 1.262710I
a = 2.48788 + 0.31944I
b = 3.39460 0.52702I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.460267 + 0.570674I
a = 1.170250 0.244142I
b = 0.285631 0.425378I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.460267 0.570674I
a = 1.170250 + 0.244142I
b = 0.285631 + 0.425378I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.333594 + 1.244840I
a = 0.37985 2.19261I
b = 1.04688 + 2.20428I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.333594 1.244840I
a = 0.37985 + 2.19261I
b = 1.04688 2.20428I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.409939 + 1.226440I
a = 1.44167 + 1.68145I
b = 1.73732 0.79694I
6.50273 13.86404 + 0.I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.409939 1.226440I
a = 1.44167 1.68145I
b = 1.73732 + 0.79694I
6.50273 13.86404 + 0.I
u = 0.355074 + 1.276000I
a = 0.74615 + 2.66734I
b = 1.85855 2.47925I
2.37968 6.44354I 9.42845 + 5.29417I
u = 0.355074 1.276000I
a = 0.74615 2.66734I
b = 1.85855 + 2.47925I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.399757
a = 0.970381
b = 0.0598901
0.845036 11.8940
16
III. I
u
3
= hb + 1, a
2
au 2a + u, u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
1
a
10
=
u
u
a
1
=
a
1
a
6
=
1
1
a
11
=
au + a u 1
au
a
8
=
u
0
a
3
=
1
0
a
2
=
a + 1
1
a
7
=
au
u
a
12
=
au
au + a u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4au + 4u 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
, c
7
c
8
, c
9
(u
2
+ 1)
2
c
3
, c
5
u
4
c
6
, c
11
u
4
u
2
+ 1
c
10
(u
2
u + 1)
2
c
12
(u
2
+ u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
4
c
2
, c
4
, c
7
c
8
, c
9
(y + 1)
4
c
3
, c
5
y
4
c
6
, c
11
(y
2
y + 1)
2
c
10
, c
12
(y
2
+ y + 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.133975 + 0.500000I
b = 1.00000
2.02988I 10.00000 + 3.46410I
u = 1.000000I
a = 1.86603 + 0.50000I
b = 1.00000
2.02988I 10.00000 3.46410I
u = 1.000000I
a = 0.133975 0.500000I
b = 1.00000
2.02988I 10.00000 3.46410I
u = 1.000000I
a = 1.86603 0.50000I
b = 1.00000
2.02988I 10.00000 + 3.46410I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
24
+ 16u
23
+ ··· 4u + 1)(u
56
+ 29u
55
+ ··· + 6u + 1)
c
2
, c
7
((u
2
+ 1)
2
)(u
24
+ 8u
22
+ ··· 2u 1)(u
56
+ u
55
+ ··· 2u + 1)
c
3
, c
5
u
4
(u
8
u
7
+ ··· 2u 1)
3
(u
56
+ 2u
55
+ ··· 464u + 32)
c
4
, c
8
, c
9
((u
2
+ 1)
2
)(u
24
+ 8u
22
+ ··· 2u 1)(u
56
+ u
55
+ ··· 12u + 1)
c
6
, c
11
(u
4
u
2
+ 1)(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
3
· (u
56
2u
55
+ ··· 3u + 2)
c
10
(u
2
u + 1)
2
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
· (u
56
+ 20u
55
+ ··· 19u + 4)
c
12
(u
2
+ u + 1)
2
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
· (u
56
+ 20u
55
+ ··· 19u + 4)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
4
)(y
24
16y
23
+ ··· 44y + 1)(y
56
+ y
55
+ ··· + 78y + 1)
c
2
, c
7
((y + 1)
4
)(y
24
+ 16y
23
+ ··· 4y + 1)(y
56
+ 29y
55
+ ··· + 6y + 1)
c
3
, c
5
y
4
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
· (y
56
42y
55
+ ··· 81664y + 1024)
c
4
, c
8
, c
9
((y + 1)
4
)(y
24
+ 16y
23
+ ··· 4y + 1)(y
56
+ 49y
55
+ ··· 90y + 1)
c
6
, c
11
(y
2
y + 1)
2
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
· (y
56
20y
55
+ ··· + 19y + 4)
c
10
, c
12
(y
2
+ y + 1)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
· (y
56
+ 32y
55
+ ··· 33y + 16)
22