12a
0508
(K12a
0508
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 11 2 6 4 1 12 5 10
Solving Sequence
2,7
3 1 6 8 4 9 5 10 12 11
c
2
c
1
c
6
c
7
c
3
c
8
c
4
c
9
c
12
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
64
u
63
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
64
u
63
+ · · · 2u 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
6
=
u
u
a
8
=
u
3
u
3
+ u
a
4
=
u
8
+ u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
9
=
u
13
2u
11
+ 3u
9
2u
7
u
u
13
3u
11
+ 5u
9
6u
7
+ 4u
5
3u
3
+ u
a
5
=
u
18
3u
16
+ 6u
14
7u
12
+ 5u
10
3u
8
u
2
+ 1
u
18
4u
16
+ 9u
14
14u
12
+ 15u
10
14u
8
+ 10u
6
6u
4
+ 3u
2
a
10
=
u
19
4u
17
+ 10u
15
16u
13
+ 19u
11
18u
9
+ 14u
7
10u
5
+ 5u
3
2u
u
21
3u
19
+ ··· 3u
3
+ u
a
12
=
u
36
+ 7u
34
+ ··· + u
2
+ 1
u
38
+ 6u
36
+ ··· + 6u
4
u
2
a
11
=
u
53
10u
51
+ ··· + 8u
3
3u
u
55
9u
53
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
62
+ 44u
60
+ ··· 24u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
64
+ 23u
63
+ ··· + 20u
2
+ 1
c
2
, c
6
u
64
u
63
+ ··· 2u 1
c
3
, c
4
, c
8
u
64
+ u
63
+ ··· + 10u
2
25
c
5
, c
11
u
64
+ u
63
+ ··· 2u 1
c
9
, c
10
, c
12
u
64
+ 17u
63
+ ··· 20u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
64
+ 37y
63
+ ··· + 40y + 1
c
2
, c
6
y
64
23y
63
+ ··· + 20y
2
+ 1
c
3
, c
4
, c
8
y
64
59y
63
+ ··· 500y + 625
c
5
, c
11
y
64
+ 17y
63
+ ··· 20y
2
+ 1
c
9
, c
10
, c
12
y
64
+ 61y
63
+ ··· 40y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.734158 + 0.668101I
1.43109 1.27456I 5.99922 + 4.38526I
u = 0.734158 0.668101I
1.43109 + 1.27456I 5.99922 4.38526I
u = 0.577379 + 0.799136I
2.16758 + 9.15664I 5.96705 5.25155I
u = 0.577379 0.799136I
2.16758 9.15664I 5.96705 + 5.25155I
u = 0.583021 + 0.792165I
2.76820 3.03900I 4.88415 + 0.40129I
u = 0.583021 0.792165I
2.76820 + 3.03900I 4.88415 0.40129I
u = 0.548606 + 0.780128I
4.67791 + 4.46553I 11.24364 4.14724I
u = 0.548606 0.780128I
4.67791 4.46553I 11.24364 + 4.14724I
u = 0.880732 + 0.573012I
1.06214 + 2.24840I 14.4188 2.9053I
u = 0.880732 0.573012I
1.06214 2.24840I 14.4188 + 2.9053I
u = 0.908597 + 0.273784I
2.57323 5.53278I 10.06397 + 6.98986I
u = 0.908597 0.273784I
2.57323 + 5.53278I 10.06397 6.98986I
u = 0.814938 + 0.667976I
2.49514 2.06773I 0. + 3.71877I
u = 0.814938 0.667976I
2.49514 + 2.06773I 0. 3.71877I
u = 0.887915 + 0.310649I
2.77545 0.35472I 9.35777 1.48918I
u = 0.887915 0.310649I
2.77545 + 0.35472I 9.35777 + 1.48918I
u = 0.551226 + 0.748282I
1.69458 1.28164I 5.29966 + 0.30789I
u = 0.551226 0.748282I
1.69458 + 1.28164I 5.29966 0.30789I
u = 0.770088 + 0.744037I
8.45315 3.75871I 0. + 2.83567I
u = 0.770088 0.744037I
8.45315 + 3.75871I 0. 2.83567I
u = 0.781202 + 0.741537I
8.62407 2.42872I 0
u = 0.781202 0.741537I
8.62407 + 2.42872I 0
u = 0.512976 + 0.755043I
4.91649 1.59221I 11.90786 + 3.54404I
u = 0.512976 0.755043I
4.91649 + 1.59221I 11.90786 3.54404I
u = 0.886320 + 0.663470I
2.27623 3.08946I 0
u = 0.886320 0.663470I
2.27623 + 3.08946I 0
u = 1.11340
7.26377 11.6170
u = 1.117230 + 0.039150I
3.19336 1.95587I 8.00000 + 0.I
u = 1.117230 0.039150I
3.19336 + 1.95587I 8.00000 + 0.I
u = 0.869584 + 0.106333I
3.24427 2.18605I 17.0727 + 6.0888I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.869584 0.106333I
3.24427 + 2.18605I 17.0727 6.0888I
u = 1.125770 + 0.039610I
3.84567 + 8.00446I 0
u = 1.125770 0.039610I
3.84567 8.00446I 0
u = 1.128630 + 0.012921I
10.47200 + 3.12169I 0
u = 1.128630 0.012921I
10.47200 3.12169I 0
u = 0.461327 + 0.727213I
1.44734 6.27170I 6.61668 + 5.37317I
u = 0.461327 0.727213I
1.44734 + 6.27170I 6.61668 5.37317I
u = 0.936943 + 0.658530I
0.82334 + 6.42603I 0
u = 0.936943 0.658530I
0.82334 6.42603I 0
u = 0.465307 + 0.705263I
2.01780 + 0.29717I 5.58354 0.33676I
u = 0.465307 0.705263I
2.01780 0.29717I 5.58354 + 0.33676I
u = 0.925319 + 0.713366I
8.18783 3.10258I 0
u = 0.925319 0.713366I
8.18783 + 3.10258I 0
u = 0.933860 + 0.711939I
7.95805 + 9.29310I 0
u = 0.933860 0.711939I
7.95805 9.29310I 0
u = 1.038150 + 0.620576I
0.43349 + 4.75751I 0
u = 1.038150 0.620576I
0.43349 4.75751I 0
u = 1.047470 + 0.619918I
0.204610 + 1.166380I 0
u = 1.047470 0.619918I
0.204610 1.166380I 0
u = 1.041800 + 0.654112I
3.12169 + 6.62412I 0
u = 1.041800 0.654112I
3.12169 6.62412I 0
u = 1.051460 + 0.642911I
6.47434 3.70666I 0
u = 1.051460 0.642911I
6.47434 + 3.70666I 0
u = 1.052550 + 0.660953I
6.16225 9.90913I 0
u = 1.052550 0.660953I
6.16225 + 9.90913I 0
u = 1.046730 + 0.676138I
1.38825 + 8.57764I 0
u = 1.046730 0.676138I
1.38825 8.57764I 0
u = 1.050950 + 0.676533I
0.7567 14.7133I 0
u = 1.050950 0.676533I
0.7567 + 14.7133I 0
u = 0.684394
1.02359 9.41090
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.017794 + 0.518720I
5.24287 + 3.00974I 2.07163 2.91236I
u = 0.017794 0.518720I
5.24287 3.00974I 2.07163 + 2.91236I
u = 0.178281 + 0.318594I
0.382136 + 0.981633I 6.53805 6.72584I
u = 0.178281 0.318594I
0.382136 0.981633I 6.53805 + 6.72584I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
64
+ 23u
63
+ ··· + 20u
2
+ 1
c
2
, c
6
u
64
u
63
+ ··· 2u 1
c
3
, c
4
, c
8
u
64
+ u
63
+ ··· + 10u
2
25
c
5
, c
11
u
64
+ u
63
+ ··· 2u 1
c
9
, c
10
, c
12
u
64
+ 17u
63
+ ··· 20u
2
+ 1
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
64
+ 37y
63
+ ··· + 40y + 1
c
2
, c
6
y
64
23y
63
+ ··· + 20y
2
+ 1
c
3
, c
4
, c
8
y
64
59y
63
+ ··· 500y + 625
c
5
, c
11
y
64
+ 17y
63
+ ··· 20y
2
+ 1
c
9
, c
10
, c
12
y
64
+ 61y
63
+ ··· 40y + 1
9