12a
0513
(K12a
0513
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 11 2 1 5 4 12 6 10
Solving Sequence
4,10
9 5 8
1,3
7 2 12 11 6
c
9
c
4
c
8
c
3
c
7
c
2
c
12
c
10
c
5
c
1
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.92594 × 10
42
u
79
6.66950 × 10
42
u
78
+ ··· + 7.86358 × 10
42
b 2.35601 × 10
43
,
5.36807 × 10
42
u
79
2.27727 × 10
43
u
78
+ ··· + 7.86358 × 10
42
a 1.74971 × 10
44
, u
80
4u
79
+ ··· 52u + 4i
I
u
2
= h−au + b + 1, a
2
+ au 1, u
2
+ 1i
I
u
3
= h−602a
4
u
2
112a
3
u
2
+ ··· 678a + 1654,
2a
4
u
2
+ a
5
+ 2a
4
u + 4a
4
3a
3
u 8a
2
u
2
3a
3
6a
2
u + 5u
2
a 12a
2
+ 4au + 11u
2
+ 9a + 5u + 18,
u
3
+ u
2
+ 2u + 1i
I
u
4
= hau + b, a
2
+ au 1, u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 103 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.93×10
42
u
79
6.67×10
42
u
78
+· · ·+7.86×10
42
b2.36×10
43
, 5.37×10
42
u
79
2.28 × 10
43
u
78
+ · · · + 7.86 × 10
42
a 1.75 × 10
44
, u
80
4u
79
+ · · · 52u + 4i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
0.682650u
79
+ 2.89597u
78
+ ··· 176.929u + 22.2508
0.244918u
79
+ 0.848150u
78
+ ··· 31.1691u + 2.99611
a
3
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
7
=
0.284048u
79
1.00384u
78
+ ··· + 100.169u 16.0275
0.259001u
79
1.01996u
78
+ ··· + 36.9256u 4.27465
a
2
=
0.595274u
79
+ 2.67307u
78
+ ··· 170.692u + 21.3726
0.245575u
79
+ 0.838980u
78
+ ··· 34.0566u + 3.54660
a
12
=
0.437731u
79
+ 2.04782u
78
+ ··· 145.760u + 19.2547
0.244918u
79
+ 0.848150u
78
+ ··· 31.1691u + 2.99611
a
11
=
0.211687u
79
0.839912u
78
+ ··· + 3.89957u + 5.74577
0.381115u
79
+ 1.41021u
78
+ ··· 36.1654u + 4.19766
a
6
=
1.04592u
79
4.04767u
78
+ ··· + 105.753u 6.02938
0.123990u
79
+ 0.478152u
78
+ ··· 0.617434u + 1.20681
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.35269u
79
+ 7.88005u
78
+ ··· 272.741u + 41.4718
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
80
+ 39u
79
+ ··· + 6u + 1
c
2
, c
6
u
80
u
79
+ ··· 3u
2
+ 1
c
3
u
80
4u
79
+ ··· + 16384u + 1024
c
4
, c
8
, c
9
u
80
+ 4u
79
+ ··· + 52u + 4
c
5
, c
11
u
80
u
79
+ ··· + 6u + 1
c
7
u
80
3u
79
+ ··· + 1122u + 989
c
10
, c
12
u
80
27u
79
+ ··· 22u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
80
+ 9y
79
+ ··· + 18y + 1
c
2
, c
6
y
80
39y
79
+ ··· 6y + 1
c
3
y
80
20y
79
+ ··· 70254592y + 1048576
c
4
, c
8
, c
9
y
80
+ 68y
79
+ ··· 632y + 16
c
5
, c
11
y
80
27y
79
+ ··· 22y + 1
c
7
y
80
+ 21y
79
+ ··· + 14907310y + 978121
c
10
, c
12
y
80
+ 57y
79
+ ··· 54y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.551136 + 0.802488I
a = 0.554036 0.632918I
b = 0.296637 1.259010I
4.73746 + 0.08999I 0
u = 0.551136 0.802488I
a = 0.554036 + 0.632918I
b = 0.296637 + 1.259010I
4.73746 0.08999I 0
u = 0.208379 + 1.008740I
a = 0.1249350 0.0323541I
b = 0.226657 + 0.715830I
1.88182 2.17157I 0
u = 0.208379 1.008740I
a = 0.1249350 + 0.0323541I
b = 0.226657 0.715830I
1.88182 + 2.17157I 0
u = 0.106567 + 1.055930I
a = 0.842709 0.235495I
b = 0.0559371 + 0.0534132I
1.50643 2.08258I 0
u = 0.106567 1.055930I
a = 0.842709 + 0.235495I
b = 0.0559371 0.0534132I
1.50643 + 2.08258I 0
u = 0.596084 + 0.710997I
a = 0.493767 0.447695I
b = 0.163120 1.208000I
4.92608 + 5.37940I 0
u = 0.596084 0.710997I
a = 0.493767 + 0.447695I
b = 0.163120 + 1.208000I
4.92608 5.37940I 0
u = 0.521840 + 0.938751I
a = 0.055226 0.427953I
b = 0.013258 1.063850I
4.08872 1.79777I 0
u = 0.521840 0.938751I
a = 0.055226 + 0.427953I
b = 0.013258 + 1.063850I
4.08872 + 1.79777I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.408175 + 1.010050I
a = 0.171639 + 0.544181I
b = 0.509729 + 1.240020I
1.18830 2.70563I 0
u = 0.408175 1.010050I
a = 0.171639 0.544181I
b = 0.509729 1.240020I
1.18830 + 2.70563I 0
u = 0.879762 + 0.227693I
a = 1.51369 + 1.09263I
b = 0.55379 + 1.42889I
0.91388 12.22470I 6.00000 + 9.71272I
u = 0.879762 0.227693I
a = 1.51369 1.09263I
b = 0.55379 1.42889I
0.91388 + 12.22470I 6.00000 9.71272I
u = 0.838234 + 0.262017I
a = 1.27745 + 0.85390I
b = 0.199465 + 1.029370I
2.02492 + 6.59780I 3.40984 5.16517I
u = 0.838234 0.262017I
a = 1.27745 0.85390I
b = 0.199465 1.029370I
2.02492 6.59780I 3.40984 + 5.16517I
u = 0.305412 + 0.799433I
a = 0.1368440 + 0.0226105I
b = 0.215314 + 0.977607I
1.84711 2.26526I 3.71962 + 4.08071I
u = 0.305412 0.799433I
a = 0.1368440 0.0226105I
b = 0.215314 0.977607I
1.84711 + 2.26526I 3.71962 4.08071I
u = 0.528719 + 1.021590I
a = 0.227668 0.723744I
b = 0.47028 1.34644I
3.33066 + 7.25011I 0
u = 0.528719 1.021590I
a = 0.227668 + 0.723744I
b = 0.47028 + 1.34644I
3.33066 7.25011I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.823129 + 0.204152I
a = 1.60401 1.00000I
b = 0.56137 1.37914I
1.28021 + 7.17762I 8.76583 5.85883I
u = 0.823129 0.204152I
a = 1.60401 + 1.00000I
b = 0.56137 + 1.37914I
1.28021 7.17762I 8.76583 + 5.85883I
u = 0.765302 + 0.332337I
a = 1.36288 + 0.78683I
b = 0.45279 + 1.35433I
3.33691 4.71601I 1.93926 + 4.79761I
u = 0.765302 0.332337I
a = 1.36288 0.78683I
b = 0.45279 1.35433I
3.33691 + 4.71601I 1.93926 4.79761I
u = 0.709218 + 0.403703I
a = 1.139150 + 0.747614I
b = 0.018638 + 1.087730I
4.06181 0.78432I 0.213330 + 0.601164I
u = 0.709218 0.403703I
a = 1.139150 0.747614I
b = 0.018638 1.087730I
4.06181 + 0.78432I 0.213330 0.601164I
u = 0.330389 + 1.137220I
a = 0.553942 1.234000I
b = 0.941219 0.028962I
0.99595 + 2.18968I 0
u = 0.330389 1.137220I
a = 0.553942 + 1.234000I
b = 0.941219 + 0.028962I
0.99595 2.18968I 0
u = 0.761131 + 0.226648I
a = 1.29441 0.79477I
b = 0.146142 0.958477I
0.18029 1.72517I 6.96648 + 1.19694I
u = 0.761131 0.226648I
a = 1.29441 + 0.79477I
b = 0.146142 + 0.958477I
0.18029 + 1.72517I 6.96648 1.19694I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.769110 + 0.124508I
a = 2.01859 + 0.33682I
b = 1.140500 + 0.180943I
4.05517 6.19535I 11.24164 + 6.13913I
u = 0.769110 0.124508I
a = 2.01859 0.33682I
b = 1.140500 0.180943I
4.05517 + 6.19535I 11.24164 6.13913I
u = 0.220897 + 1.201700I
a = 0.221048 + 0.378026I
b = 0.755621 + 1.106820I
1.01320 1.61452I 0
u = 0.220897 1.201700I
a = 0.221048 0.378026I
b = 0.755621 1.106820I
1.01320 + 1.61452I 0
u = 0.763645 + 0.064433I
a = 1.96075 0.18144I
b = 1.126830 0.094815I
5.81886 + 1.20518I 14.4550 0.8575I
u = 0.763645 0.064433I
a = 1.96075 + 0.18144I
b = 1.126830 + 0.094815I
5.81886 1.20518I 14.4550 + 0.8575I
u = 0.327694 + 1.195580I
a = 0.696454 + 1.008560I
b = 1.033350 0.080637I
2.36178 + 2.75003I 0
u = 0.327694 1.195580I
a = 0.696454 1.008560I
b = 1.033350 + 0.080637I
2.36178 2.75003I 0
u = 0.147606 + 1.296040I
a = 1.63223 1.23495I
b = 0.037662 + 1.042620I
3.72526 2.52051I 0
u = 0.147606 1.296040I
a = 1.63223 + 1.23495I
b = 0.037662 1.042620I
3.72526 + 2.52051I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.049107 + 1.308430I
a = 0.502531 0.144008I
b = 0.949755 0.904347I
4.24144 + 4.07906I 0
u = 0.049107 1.308430I
a = 0.502531 + 0.144008I
b = 0.949755 + 0.904347I
4.24144 4.07906I 0
u = 0.670555 + 0.086690I
a = 2.05137 0.81648I
b = 0.613705 1.242710I
2.33556 + 4.87257I 10.70507 5.88102I
u = 0.670555 0.086690I
a = 2.05137 + 0.81648I
b = 0.613705 + 1.242710I
2.33556 4.87257I 10.70507 + 5.88102I
u = 0.315351 + 1.304030I
a = 0.921696 + 0.699551I
b = 1.203010 0.251403I
1.54253 + 5.09315I 0
u = 0.315351 1.304030I
a = 0.921696 0.699551I
b = 1.203010 + 0.251403I
1.54253 5.09315I 0
u = 0.266524 + 1.325000I
a = 1.62612 + 1.19602I
b = 0.51362 1.36083I
2.10689 + 8.26650I 0
u = 0.266524 1.325000I
a = 1.62612 1.19602I
b = 0.51362 + 1.36083I
2.10689 8.26650I 0
u = 0.585654 + 0.221603I
a = 1.32826 0.55799I
b = 0.211347 0.394465I
0.36980 + 4.43761I 4.75087 6.66233I
u = 0.585654 0.221603I
a = 1.32826 + 0.55799I
b = 0.211347 + 0.394465I
0.36980 4.43761I 4.75087 + 6.66233I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.121476 + 1.374030I
a = 0.776792 0.099407I
b = 0.497170 0.215952I
7.00972 0.03580I 0
u = 0.121476 1.374030I
a = 0.776792 + 0.099407I
b = 0.497170 + 0.215952I
7.00972 + 0.03580I 0
u = 0.319084 + 1.344980I
a = 1.014690 0.624204I
b = 1.275130 + 0.292082I
0.57753 10.12060I 0
u = 0.319084 1.344980I
a = 1.014690 + 0.624204I
b = 1.275130 0.292082I
0.57753 + 10.12060I 0
u = 0.245398 + 1.369620I
a = 0.722283 0.225370I
b = 0.505471 0.436922I
5.38272 + 7.52809I 0
u = 0.245398 1.369620I
a = 0.722283 + 0.225370I
b = 0.505471 + 0.436922I
5.38272 7.52809I 0
u = 0.31258 + 1.39281I
a = 1.48142 + 0.38881I
b = 0.264823 1.069660I
4.95968 5.61831I 0
u = 0.31258 1.39281I
a = 1.48142 0.38881I
b = 0.264823 + 1.069660I
4.95968 + 5.61831I 0
u = 0.34340 + 1.39206I
a = 1.60088 + 0.60509I
b = 0.56567 1.47569I
3.78107 + 11.38600I 0
u = 0.34340 1.39206I
a = 1.60088 0.60509I
b = 0.56567 + 1.47569I
3.78107 11.38600I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02337 + 1.45374I
a = 0.149541 1.005020I
b = 0.150773 + 1.367660I
8.93138 2.93585I 0
u = 0.02337 1.45374I
a = 0.149541 + 1.005020I
b = 0.150773 1.367660I
8.93138 + 2.93585I 0
u = 0.29501 + 1.42781I
a = 1.30790 0.65861I
b = 0.49197 + 1.49263I
8.94290 8.53329I 0
u = 0.29501 1.42781I
a = 1.30790 + 0.65861I
b = 0.49197 1.49263I
8.94290 + 8.53329I 0
u = 0.34014 + 1.41816I
a = 1.45611 0.29908I
b = 0.319417 + 1.089870I
7.36888 + 10.84370I 0
u = 0.34014 1.41816I
a = 1.45611 + 0.29908I
b = 0.319417 1.089870I
7.36888 10.84370I 0
u = 0.25771 + 1.43558I
a = 1.292160 0.461107I
b = 0.212673 + 1.164040I
9.91847 + 2.66208I 0
u = 0.25771 1.43558I
a = 1.292160 + 0.461107I
b = 0.212673 1.164040I
9.91847 2.66208I 0
u = 0.36648 + 1.41215I
a = 1.59384 0.46201I
b = 0.58244 + 1.50990I
6.1192 16.7066I 0
u = 0.36648 1.41215I
a = 1.59384 + 0.46201I
b = 0.58244 1.50990I
6.1192 + 16.7066I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.267652 + 0.469417I
a = 1.287930 0.150939I
b = 0.155923 0.055103I
1.47309 1.47748I 0.853173 + 0.501389I
u = 0.267652 0.469417I
a = 1.287930 + 0.150939I
b = 0.155923 + 0.055103I
1.47309 + 1.47748I 0.853173 0.501389I
u = 0.03028 + 1.50039I
a = 0.383013 + 0.722409I
b = 0.053416 1.393890I
12.59510 1.27716I 0
u = 0.03028 1.50039I
a = 0.383013 0.722409I
b = 0.053416 + 1.393890I
12.59510 + 1.27716I 0
u = 0.07316 + 1.49993I
a = 0.118714 + 0.762219I
b = 0.18506 1.45576I
12.4175 + 7.3131I 0
u = 0.07316 1.49993I
a = 0.118714 0.762219I
b = 0.18506 + 1.45576I
12.4175 7.3131I 0
u = 0.410317 + 0.068593I
a = 0.076036 + 0.775710I
b = 0.417482 + 0.255970I
0.972335 0.113438I 11.49870 + 0.99619I
u = 0.410317 0.068593I
a = 0.076036 0.775710I
b = 0.417482 0.255970I
0.972335 + 0.113438I 11.49870 0.99619I
u = 0.168606 + 0.085574I
a = 1.38717 5.08704I
b = 0.501486 0.738647I
0.08992 + 4.10562I 9.80690 7.22475I
u = 0.168606 0.085574I
a = 1.38717 + 5.08704I
b = 0.501486 + 0.738647I
0.08992 4.10562I 9.80690 + 7.22475I
12
II. I
u
2
= h−au + b + 1, a
2
+ au 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
9
=
1
1
a
5
=
u
0
a
8
=
0
1
a
1
=
a
au 1
a
3
=
0
u
a
7
=
au + 1
u 1
a
2
=
a
au a 1
a
12
=
au + a + 1
au 1
a
11
=
au u + 1
au
a
6
=
au
a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8au
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
(u
2
u + 1)
2
c
2
, c
5
, c
6
c
7
, c
11
u
4
u
2
+ 1
c
3
u
4
c
4
, c
8
, c
9
(u
2
+ 1)
2
c
10
(u
2
+ u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
(y
2
+ y + 1)
2
c
2
, c
5
, c
6
c
7
, c
11
(y
2
y + 1)
2
c
3
y
4
c
4
, c
8
, c
9
(y + 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.866025 0.500000I
b = 0.500000 0.866025I
1.64493 4.05977I 4.00000 + 6.92820I
u = 1.000000I
a = 0.866025 0.500000I
b = 0.500000 + 0.866025I
1.64493 + 4.05977I 4.00000 6.92820I
u = 1.000000I
a = 0.866025 + 0.500000I
b = 0.500000 + 0.866025I
1.64493 + 4.05977I 4.00000 6.92820I
u = 1.000000I
a = 0.866025 + 0.500000I
b = 0.500000 0.866025I
1.64493 4.05977I 4.00000 + 6.92820I
16
III. I
u
3
= h−602a
4
u
2
112a
3
u
2
+ · · · 678a + 1654, 2a
4
u
2
8a
2
u
2
+ · · · +
9a + 18, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
5
=
u
u
2
u 1
a
8
=
u
2
+ 1
u
2
+ u + 1
a
1
=
a
0.523023a
4
u
2
+ 0.0973067a
3
u
2
+ ··· + 0.589053a 1.43701
a
3
=
1
0
a
7
=
0.0225891a
4
u
2
0.112076a
3
u
2
+ ··· 0.874891a + 2.13727
0.0816681a
4
u
2
0.635969a
3
u
2
+ ··· 0.778454a + 2.03475
a
2
=
0.523023a
4
u
2
0.0973067a
3
u
2
+ ··· + 0.410947a + 1.43701
0.523023a
4
u
2
+ 0.0973067a
3
u
2
+ ··· + 0.589053a 1.43701
a
12
=
0.523023a
4
u
2
0.0973067a
3
u
2
+ ··· + 0.410947a + 1.43701
0.523023a
4
u
2
+ 0.0973067a
3
u
2
+ ··· + 0.589053a 1.43701
a
11
=
0.901825a
4
u
2
+ 0.320591a
3
u
2
+ ··· 0.148566a + 2.21199
0.960904a
4
u
2
0.844483a
3
u
2
+ ··· + 0.245004a 2.31451
a
6
=
0.0877498a
4
u
2
+ 0.295395a
3
u
2
+ ··· + 0.716768a 2.00521
0.435274a
4
u
2
+ 0.198089a
3
u
2
+ ··· 0.872285a 0.568202
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u + 10
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 6u
14
+ ··· + 2u + 1
c
2
, c
5
, c
6
c
11
u
15
3u
13
+ ··· + u
2
1
c
3
(u
3
+ u
2
1)
5
c
4
, c
8
, c
9
(u
3
u
2
+ 2u 1)
5
c
7
u
15
3u
13
+ ··· + 6u 1
c
10
, c
12
u
15
6u
14
+ ··· + 2u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
y
15
+ 6y
14
+ ··· 6y 1
c
2
, c
5
, c
6
c
11
y
15
6y
14
+ ··· + 2y 1
c
3
(y
3
y
2
+ 2y 1)
5
c
4
, c
8
, c
9
(y
3
+ 3y
2
+ 2y 1)
5
c
7
y
15
6y
14
+ ··· + 26y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.743485 0.454988I
b = 1.099900 + 0.434905I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.667721 + 0.158832I
b = 0.386904 + 0.394695I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.393785 0.432427I
b = 0.88734 1.13381I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 1.68366 + 0.81495I
b = 0.067189 1.008200I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 1.45923 1.57609I
b = 0.466851 + 1.312400I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.743485 + 0.454988I
b = 1.099900 0.434905I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 0.667721 0.158832I
b = 0.386904 0.394695I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 0.393785 + 0.432427I
b = 0.88734 + 1.13381I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 1.68366 0.81495I
b = 0.067189 + 1.008200I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 1.45923 + 1.57609I
b = 0.466851 1.312400I
3.02413 + 2.82812I 2.49024 2.97945I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.569840
a = 1.17678
b = 0.803523
1.11345 9.01950
u = 0.569840
a = 1.32386 + 0.76221I
b = 0.045572 + 0.634784I
1.11345 9.01950
u = 0.569840
a = 1.32386 0.76221I
b = 0.045572 0.634784I
1.11345 9.01950
u = 0.569840
a = 2.49035 + 0.78497I
b = 0.643810 + 1.156050I
1.11345 9.01950
u = 0.569840
a = 2.49035 0.78497I
b = 0.643810 1.156050I
1.11345 9.01950
21
IV. I
u
4
= hau + b, a
2
+ au 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
9
=
1
1
a
5
=
u
0
a
8
=
0
1
a
1
=
a
au
a
3
=
0
u
a
7
=
au + 1
a u 1
a
2
=
a
au a
a
12
=
au + a
au
a
11
=
au + a + u
au + 1
a
6
=
au
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
(u
2
u + 1)
2
c
2
, c
5
, c
6
c
7
, c
11
u
4
u
2
+ 1
c
3
u
4
c
4
, c
8
, c
9
(u
2
+ 1)
2
c
10
(u
2
+ u + 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
(y
2
+ y + 1)
2
c
2
, c
5
, c
6
c
7
, c
11
(y
2
y + 1)
2
c
3
y
4
c
4
, c
8
, c
9
(y + 1)
4
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.866025 0.500000I
b = 0.500000 + 0.866025I
1.64493 4.00000
u = 1.000000I
a = 0.866025 0.500000I
b = 0.500000 0.866025I
1.64493 4.00000
u = 1.000000I
a = 0.866025 + 0.500000I
b = 0.500000 0.866025I
1.64493 4.00000
u = 1.000000I
a = 0.866025 + 0.500000I
b = 0.500000 + 0.866025I
1.64493 4.00000
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
15
+ 6u
14
+ ··· + 2u + 1)(u
80
+ 39u
79
+ ··· + 6u + 1)
c
2
, c
6
((u
4
u
2
+ 1)
2
)(u
15
3u
13
+ ··· + u
2
1)(u
80
u
79
+ ··· 3u
2
+ 1)
c
3
u
8
(u
3
+ u
2
1)
5
(u
80
4u
79
+ ··· + 16384u + 1024)
c
4
, c
8
, c
9
((u
2
+ 1)
4
)(u
3
u
2
+ 2u 1)
5
(u
80
+ 4u
79
+ ··· + 52u + 4)
c
5
, c
11
((u
4
u
2
+ 1)
2
)(u
15
3u
13
+ ··· + u
2
1)(u
80
u
79
+ ··· + 6u + 1)
c
7
((u
4
u
2
+ 1)
2
)(u
15
3u
13
+ ··· + 6u 1)
· (u
80
3u
79
+ ··· + 1122u + 989)
c
10
((u
2
+ u + 1)
4
)(u
15
6u
14
+ ··· + 2u 1)(u
80
27u
79
+ ··· 22u + 1)
c
12
((u
2
u + 1)
4
)(u
15
6u
14
+ ··· + 2u 1)(u
80
27u
79
+ ··· 22u + 1)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
15
+ 6y
14
+ ··· 6y 1)(y
80
+ 9y
79
+ ··· + 18y + 1)
c
2
, c
6
((y
2
y + 1)
4
)(y
15
6y
14
+ ··· + 2y 1)(y
80
39y
79
+ ··· 6y + 1)
c
3
y
8
(y
3
y
2
+ 2y 1)
5
(y
80
20y
79
+ ··· 7.02546 × 10
7
y + 1048576)
c
4
, c
8
, c
9
((y + 1)
8
)(y
3
+ 3y
2
+ 2y 1)
5
(y
80
+ 68y
79
+ ··· 632y + 16)
c
5
, c
11
((y
2
y + 1)
4
)(y
15
6y
14
+ ··· + 2y 1)(y
80
27y
79
+ ··· 22y + 1)
c
7
((y
2
y + 1)
4
)(y
15
6y
14
+ ··· + 26y 1)
· (y
80
+ 21y
79
+ ··· + 14907310y + 978121)
c
10
, c
12
((y
2
+ y + 1)
4
)(y
15
+ 6y
14
+ ··· 6y 1)(y
80
+ 57y
79
+ ··· 54y + 1)
27