12a
0519
(K12a
0519
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 11 12 2 4 1 5 6 10
Solving Sequence
2,8
7 3 4 9 5 1 10 11 12 6
c
7
c
2
c
3
c
8
c
4
c
1
c
9
c
10
c
12
c
6
c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
55
+ u
54
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
55
+ u
54
+ · · · 2u 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
9
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
10
=
u
14
3u
12
4u
10
u
8
+ 1
u
16
4u
14
8u
12
8u
10
4u
8
+ 2u
6
+ 4u
4
+ 2u
2
a
11
=
u
34
+ 9u
32
+ ··· u
2
+ 1
u
34
10u
32
+ ··· + 6u
4
+ 3u
2
a
12
=
u
25
+ 6u
23
+ ··· + 2u
3
+ u
u
27
+ 7u
25
+ ··· + 3u
3
+ u
a
6
=
u
50
13u
48
+ ··· u
2
+ 1
u
52
14u
50
+ ··· 18u
6
5u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
53
+ 4u
52
+ ··· 4u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
55
+ 31u
54
+ ··· + 4u 1
c
2
, c
7
u
55
+ u
54
+ ··· 2u 1
c
3
, c
4
, c
8
u
55
u
54
+ ··· + u 2
c
5
, c
6
, c
10
c
11
u
55
+ u
54
+ ··· 2u 1
c
9
, c
12
u
55
11u
54
+ ··· + 8u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
55
13y
54
+ ··· + 68y 1
c
2
, c
7
y
55
+ 31y
54
+ ··· + 4y 1
c
3
, c
4
, c
8
y
55
57y
54
+ ··· + 293y 4
c
5
, c
6
, c
10
c
11
y
55
61y
54
+ ··· + 4y 1
c
9
, c
12
y
55
+ 23y
54
+ ··· 36y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.102308 + 0.993927I
1.51781 + 1.35357I 14.4750 4.2304I
u = 0.102308 0.993927I
1.51781 1.35357I 14.4750 + 4.2304I
u = 0.485253 + 0.877654I
4.60903 0.50394I 9.84299 + 3.20622I
u = 0.485253 0.877654I
4.60903 + 0.50394I 9.84299 3.20622I
u = 0.479095 + 0.928930I
1.53724 + 2.73421I 6.40413 2.99488I
u = 0.479095 0.928930I
1.53724 2.73421I 6.40413 + 2.99488I
u = 0.328532 + 0.998033I
3.02866 2.73775I 17.4070 + 6.3920I
u = 0.328532 0.998033I
3.02866 + 2.73775I 17.4070 6.3920I
u = 0.116890 + 1.065220I
8.61843 3.30249I 17.5441 + 2.1403I
u = 0.116890 1.065220I
8.61843 + 3.30249I 17.5441 2.1403I
u = 0.491393 + 0.960867I
1.09428 6.52024I 8.28646 + 9.91432I
u = 0.491393 0.960867I
1.09428 + 6.52024I 8.28646 9.91432I
u = 0.503891 + 0.983618I
5.90815 + 9.04807I 12.0898 8.5316I
u = 0.503891 0.983618I
5.90815 9.04807I 12.0898 + 8.5316I
u = 0.243423 + 0.854516I
0.623812 + 1.209860I 7.64614 4.90268I
u = 0.243423 0.854516I
0.623812 1.209860I 7.64614 + 4.90268I
u = 0.870822
14.9278 15.7210
u = 0.333283 + 1.082310I
10.49970 + 3.34960I 17.9466 4.0527I
u = 0.333283 1.082310I
10.49970 3.34960I 17.9466 + 4.0527I
u = 0.861168 + 0.072729I
10.59330 + 8.29227I 12.98061 4.57740I
u = 0.861168 0.072729I
10.59330 8.29227I 12.98061 + 4.57740I
u = 0.845961 + 0.068541I
3.20212 5.70812I 9.97360 + 5.97545I
u = 0.845961 0.068541I
3.20212 + 5.70812I 9.97360 5.97545I
u = 0.840103
6.53703 14.4920
u = 0.825031 + 0.057929I
2.24307 + 1.86074I 7.46523 + 0.06131I
u = 0.825031 0.057929I
2.24307 1.86074I 7.46523 0.06131I
u = 0.514519 + 0.590131I
3.81103 3.61233I 7.78381 + 3.89227I
u = 0.514519 0.590131I
3.81103 + 3.61233I 7.78381 3.89227I
u = 0.503991 + 0.523196I
2.66446 + 1.32817I 3.49967 4.01662I
u = 0.503991 0.523196I
2.66446 1.32817I 3.49967 + 4.01662I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.726197
7.37532 11.5790
u = 0.572655 + 0.425482I
4.35800 4.75776I 8.70806 + 3.36680I
u = 0.572655 0.425482I
4.35800 + 4.75776I 8.70806 3.36680I
u = 0.463308 + 1.201860I
10.77920 + 4.40954I 0
u = 0.463308 1.201860I
10.77920 4.40954I 0
u = 0.530920 + 0.462145I
2.47339 + 2.35970I 4.46729 4.22291I
u = 0.530920 0.462145I
2.47339 2.35970I 4.46729 + 4.22291I
u = 0.431213 + 1.227700I
6.07588 2.53923I 0
u = 0.431213 1.227700I
6.07588 + 2.53923I 0
u = 0.423975 + 1.239910I
7.15358 1.27519I 0
u = 0.423975 1.239910I
7.15358 + 1.27519I 0
u = 0.485017 + 1.219700I
5.68867 6.60293I 0
u = 0.485017 1.219700I
5.68867 + 6.60293I 0
u = 0.459979 + 1.232640I
10.22260 + 4.63419I 0
u = 0.459979 1.232640I
10.22260 4.63419I 0
u = 0.421595 + 1.249750I
14.6184 + 3.8161I 0
u = 0.421595 1.249750I
14.6184 3.8161I 0
u = 0.492780 + 1.225990I
6.65767 + 10.54660I 0
u = 0.492780 1.225990I
6.65767 10.54660I 0
u = 0.497583 + 1.231530I
14.0678 13.1961I 0
u = 0.497583 1.231530I
14.0678 + 13.1961I 0
u = 0.464095 + 1.248480I
18.7025 4.7501I 0
u = 0.464095 1.248480I
18.7025 + 4.7501I 0
u = 0.653534
7.36372 12.0180
u = 0.350221
0.718328 13.6840
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
55
+ 31u
54
+ ··· + 4u 1
c
2
, c
7
u
55
+ u
54
+ ··· 2u 1
c
3
, c
4
, c
8
u
55
u
54
+ ··· + u 2
c
5
, c
6
, c
10
c
11
u
55
+ u
54
+ ··· 2u 1
c
9
, c
12
u
55
11u
54
+ ··· + 8u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
55
13y
54
+ ··· + 68y 1
c
2
, c
7
y
55
+ 31y
54
+ ··· + 4y 1
c
3
, c
4
, c
8
y
55
57y
54
+ ··· + 293y 4
c
5
, c
6
, c
10
c
11
y
55
61y
54
+ ··· + 4y 1
c
9
, c
12
y
55
+ 23y
54
+ ··· 36y 1
8