12a
0525
(K12a
0525
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 12 11 2 10 4 1 6 5
Solving Sequence
5,9
4
1,10
11 8 3 2 7 12 6
c
4
c
9
c
10
c
8
c
3
c
1
c
7
c
12
c
5
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
27
+ u
26
+ ··· + 4b + 1, u
27
u
26
+ ··· + 4a + 3, u
28
+ 7u
26
+ ··· + u + 1i
I
u
2
= h716399893584u
45
+ 1564714832102u
44
+ ··· + 14311443700915b 42121557729620,
1246408210566u
45
1464820132004u
44
+ ··· + 14311443700915a 50730055068599,
u
46
u
45
+ ··· 6u + 5i
I
u
3
= hb + a + 1, a
2
+ au + 2a + u + 2, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
27
+u
26
+· · ·+4b+1, u
27
u
26
+· · ·+4a+3, u
28
+7u
26
+· · ·+u+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
1
=
1
4
u
27
+
1
4
u
26
+ ···
1
2
u
4
3
4
1
4
u
27
1
4
u
26
+ ··· u
2
1
4
a
10
=
u
u
3
+ u
a
11
=
5
4
u
27
+
3
4
u
26
+ ··· + 3u +
5
4
u
27
1
2
u
26
+ ···
3
2
u 1
a
8
=
u
3
u
5
+ u
3
+ u
a
3
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
2
=
1
4
u
27
+
1
4
u
26
+ ··· + u
2
3
4
1
4
u
27
1
4
u
26
+ ··· u
2
1
4
a
7
=
1
4
u
27
+
1
4
u
26
+ ···
1
2
u +
1
4
1
4
u
27
1
4
u
26
+ ··· +
1
2
u
1
4
a
12
=
1
2
u
27
+
1
2
u
26
+ ··· + u
2
1
2
1
4
u
27
1
4
u
26
+ ··· u
2
1
4
a
6
=
5
4
u
27
5
4
u
26
+ ···
5
2
u
4
5
4
1
2
u
27
+
1
2
u
26
+ ···
1
2
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
27
3u
26
+ 41u
25
15u
24
+ 144u
23
42u
22
+ 311u
21
64u
20
+
447u
19
54u
18
+ 417u
17
+ 12u
16
+ 224u
15
+ 72u
14
+ 22u
13
+ 88u
12
43u
11
+ 23u
10
15u
8
+ 40u
7
32u
6
+ 39u
5
2u
4
+ 15u
3
+ u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
28
+ 14u
27
+ ··· + 3u + 1
c
2
, c
4
, c
7
c
9
u
28
+ 7u
26
+ ··· u + 1
c
3
u
28
3u
27
+ ··· 16u + 32
c
5
, c
6
, c
11
c
12
u
28
3u
27
+ ··· 11u + 2
c
10
u
28
9u
27
+ ··· 577u + 88
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
28
+ 6y
27
+ ··· + 7y + 1
c
2
, c
4
, c
7
c
9
y
28
+ 14y
27
+ ··· + 3y + 1
c
3
y
28
17y
27
+ ··· + 9472y + 1024
c
5
, c
6
, c
11
c
12
y
28
+ 33y
27
+ ··· y + 4
c
10
y
28
15y
27
+ ··· 37601y + 7744
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.561145 + 0.801172I
a = 0.789871 + 0.574150I
b = 0.517508 + 0.330068I
1.48439 2.80149I 6.48594 + 3.23788I
u = 0.561145 0.801172I
a = 0.789871 0.574150I
b = 0.517508 0.330068I
1.48439 + 2.80149I 6.48594 3.23788I
u = 0.579647 + 0.897152I
a = 1.50711 0.28805I
b = 0.497793 + 0.554969I
0.84370 + 6.32564I 3.80658 10.10200I
u = 0.579647 0.897152I
a = 1.50711 + 0.28805I
b = 0.497793 0.554969I
0.84370 6.32564I 3.80658 + 10.10200I
u = 0.644615 + 0.631322I
a = 0.490860 1.215860I
b = 0.02723 1.47847I
4.08922 + 1.25049I 3.66147 3.30700I
u = 0.644615 0.631322I
a = 0.490860 + 1.215860I
b = 0.02723 + 1.47847I
4.08922 1.25049I 3.66147 + 3.30700I
u = 0.215428 + 0.829791I
a = 0.37664 1.75550I
b = 0.01632 + 1.64841I
11.32300 1.08394I 0.67442 + 6.46054I
u = 0.215428 0.829791I
a = 0.37664 + 1.75550I
b = 0.01632 1.64841I
11.32300 + 1.08394I 0.67442 6.46054I
u = 0.605441 + 0.975082I
a = 2.03396 0.23377I
b = 0.12308 1.53651I
6.10857 8.52011I 0.08752 + 8.22687I
u = 0.605441 0.975082I
a = 2.03396 + 0.23377I
b = 0.12308 + 1.53651I
6.10857 + 8.52011I 0.08752 8.22687I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.810575 + 0.181460I
a = 1.099550 0.535592I
b = 0.11876 1.60426I
8.19035 + 4.61598I 1.91466 2.19636I
u = 0.810575 0.181460I
a = 1.099550 + 0.535592I
b = 0.11876 + 1.60426I
8.19035 4.61598I 1.91466 + 2.19636I
u = 0.300734 + 0.727001I
a = 0.319517 + 0.635052I
b = 0.051371 0.848410I
2.65911 + 1.36971I 0.64034 4.77051I
u = 0.300734 0.727001I
a = 0.319517 0.635052I
b = 0.051371 + 0.848410I
2.65911 1.36971I 0.64034 + 4.77051I
u = 0.472666 + 1.163270I
a = 0.025330 + 0.342893I
b = 0.373723 0.874275I
7.17751 5.06879I 3.79171 + 3.11845I
u = 0.472666 1.163270I
a = 0.025330 0.342893I
b = 0.373723 + 0.874275I
7.17751 + 5.06879I 3.79171 3.11845I
u = 0.434237 + 1.181820I
a = 0.271152 1.262610I
b = 0.09543 + 1.65532I
15.9103 + 3.3004I 5.83767 4.22098I
u = 0.434237 1.181820I
a = 0.271152 + 1.262610I
b = 0.09543 1.65532I
15.9103 3.3004I 5.83767 + 4.22098I
u = 0.711695 + 0.202130I
a = 1.179690 + 0.185635I
b = 0.417783 + 0.681445I
0.38114 2.62748I 4.50546 + 4.03150I
u = 0.711695 0.202130I
a = 1.179690 0.185635I
b = 0.417783 0.681445I
0.38114 + 2.62748I 4.50546 4.03150I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.517461 + 1.173180I
a = 0.528302 + 0.520595I
b = 0.642923 + 0.090809I
4.19208 + 8.45490I 1.37879 5.98873I
u = 0.517461 1.173180I
a = 0.528302 0.520595I
b = 0.642923 0.090809I
4.19208 8.45490I 1.37879 + 5.98873I
u = 0.532917 + 1.201560I
a = 1.37394 0.82619I
b = 0.498601 + 0.771418I
6.21060 12.29660I 2.15740 + 10.05358I
u = 0.532917 1.201560I
a = 1.37394 + 0.82619I
b = 0.498601 0.771418I
6.21060 + 12.29660I 2.15740 10.05358I
u = 0.539110 + 1.224760I
a = 2.19344 + 0.93037I
b = 0.14542 1.63022I
14.3989 + 14.7396I 4.25699 8.49623I
u = 0.539110 1.224760I
a = 2.19344 0.93037I
b = 0.14542 + 1.63022I
14.3989 14.7396I 4.25699 + 8.49623I
u = 0.529327 + 0.333044I
a = 1.065480 + 0.149372I
b = 0.440655 + 0.212109I
1.000800 0.418896I 9.51810 + 3.62447I
u = 0.529327 0.333044I
a = 1.065480 0.149372I
b = 0.440655 0.212109I
1.000800 + 0.418896I 9.51810 3.62447I
7
II.
I
u
2
= h7.16×10
11
u
45
+1.56×10
12
u
44
+· · ·+1.43×10
13
b4.21×10
13
, 1.25×
10
12
u
45
1.46×10
12
u
44
+· · ·+1.43×10
13
a5.07×10
13
, u
46
u
45
+· · ·6u+5i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
1
=
0.0870917u
45
+ 0.102353u
44
+ ··· + 0.144487u + 3.54472
0.0500578u
45
0.109333u
44
+ ··· + 1.16384u + 2.94321
a
10
=
u
u
3
+ u
a
11
=
0.326284u
45
+ 0.410432u
44
+ ··· 4.06775u + 1.72544
0.543037u
45
+ 0.187376u
44
+ ··· 0.175104u 4.56461
a
8
=
u
3
u
5
+ u
3
+ u
a
3
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
2
=
0.343127u
45
+ 0.178658u
44
+ ··· 0.482261u + 2.67882
0.517669u
45
+ 0.00968254u
44
+ ··· + 1.41813u + 3.82144
a
7
=
0.804906u
45
+ 1.05487u
44
+ ··· 5.92981u + 4.66531
0.0268193u
45
0.282855u
44
+ ··· 0.213286u + 0.465832
a
12
=
0.137150u
45
+ 0.211686u
44
+ ··· 1.01935u + 0.601511
0.0500578u
45
0.109333u
44
+ ··· + 1.16384u + 2.94321
a
6
=
0.159624u
45
+ 0.184010u
44
+ ··· 0.492668u 5.14365
0.0612648u
45
0.180573u
44
+ ··· + 1.65763u + 0.574784
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
26464957613496
14311443700915
u
45
+
19226079710712
14311443700915
u
44
+ ···
165615168368444
14311443700915
u
9675043718942
2862288740183
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
46
+ 27u
45
+ ··· + 44u + 25
c
2
, c
4
, c
7
c
9
u
46
+ u
45
+ ··· + 6u + 5
c
3
(u
23
+ u
22
+ ··· + 4u 5)
2
c
5
, c
6
, c
11
c
12
(u
23
+ u
22
+ ··· 2u 1)
2
c
10
(u
23
7u
22
+ ··· + 40u 17)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
46
17y
45
+ ··· 11736y + 625
c
2
, c
4
, c
7
c
9
y
46
+ 27y
45
+ ··· + 44y + 25
c
3
(y
23
17y
22
+ ··· 144y 25)
2
c
5
, c
6
, c
11
c
12
(y
23
+ 27y
22
+ ··· 4y 1)
2
c
10
(y
23
9y
22
+ ··· + 1260y 289)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.594093 + 0.867126I
a = 1.78487 0.73898I
b = 0.08584 1.50808I
4.75454 + 3.53591I 2.63493 3.24061I
u = 0.594093 0.867126I
a = 1.78487 + 0.73898I
b = 0.08584 + 1.50808I
4.75454 3.53591I 2.63493 + 3.24061I
u = 0.560264 + 0.733902I
a = 1.43784 0.04229I
b = 0.477903 + 0.451361I
1.67853 1.68040I 6.82272 + 4.29991I
u = 0.560264 0.733902I
a = 1.43784 + 0.04229I
b = 0.477903 0.451361I
1.67853 + 1.68040I 6.82272 4.29991I
u = 0.894194 + 0.150322I
a = 1.011220 0.336769I
b = 0.13674 1.61894I
11.1611 9.5466I 1.28748 + 5.57899I
u = 0.894194 0.150322I
a = 1.011220 + 0.336769I
b = 0.13674 + 1.61894I
11.1611 + 9.5466I 1.28748 5.57899I
u = 0.379272 + 0.794858I
a = 2.51473 2.40755I
b = 0.03322 1.55779I
10.40710 1.68405I 2.35516 + 3.83025I
u = 0.379272 0.794858I
a = 2.51473 + 2.40755I
b = 0.03322 + 1.55779I
10.40710 + 1.68405I 2.35516 3.83025I
u = 0.710804 + 0.500232I
a = 0.192902 1.103000I
b = 0.08584 1.50808I
4.75454 + 3.53591I 2.63493 3.24061I
u = 0.710804 0.500232I
a = 0.192902 + 1.103000I
b = 0.08584 + 1.50808I
4.75454 3.53591I 2.63493 + 3.24061I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.846968 + 0.166502I
a = 1.078960 + 0.115479I
b = 0.473302 + 0.738923I
3.12646 + 7.25342I 0.90266 7.25802I
u = 0.846968 0.166502I
a = 1.078960 0.115479I
b = 0.473302 0.738923I
3.12646 7.25342I 0.90266 + 7.25802I
u = 0.052669 + 1.148020I
a = 0.074549 + 0.589699I
b = 0.228067 0.467269I
3.43004 0.92592I 1.05751 + 7.44214I
u = 0.052669 1.148020I
a = 0.074549 0.589699I
b = 0.228067 + 0.467269I
3.43004 + 0.92592I 1.05751 7.44214I
u = 0.599336 + 0.599151I
a = 0.958651 + 0.515545I
b = 0.477903 + 0.451361I
1.67853 1.68040I 6.82272 + 4.29991I
u = 0.599336 0.599151I
a = 0.958651 0.515545I
b = 0.477903 0.451361I
1.67853 + 1.68040I 6.82272 4.29991I
u = 0.171279 + 0.803495I
a = 2.17027 + 0.98312I
b = 0.228067 + 0.467269I
3.43004 + 0.92592I 1.05751 7.44214I
u = 0.171279 0.803495I
a = 2.17027 0.98312I
b = 0.228067 0.467269I
3.43004 0.92592I 1.05751 + 7.44214I
u = 0.370882 + 1.129040I
a = 0.031596 + 0.407800I
b = 0.324148 0.802707I
4.10703 + 0.74531I 1.080087 + 0.735219I
u = 0.370882 1.129040I
a = 0.031596 0.407800I
b = 0.324148 + 0.802707I
4.10703 0.74531I 1.080087 0.735219I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.471860 + 1.105300I
a = 0.546147 + 0.570157I
b = 0.581337 + 0.108709I
1.28388 3.66457I 4.82434 + 2.67133I
u = 0.471860 1.105300I
a = 0.546147 0.570157I
b = 0.581337 0.108709I
1.28388 + 3.66457I 4.82434 2.67133I
u = 0.770157 + 0.179548I
a = 1.022920 + 0.016288I
b = 0.581337 + 0.108709I
1.28388 3.66457I 4.82434 + 2.67133I
u = 0.770157 0.179548I
a = 1.022920 0.016288I
b = 0.581337 0.108709I
1.28388 + 3.66457I 4.82434 2.67133I
u = 0.358586 + 1.177180I
a = 0.452320 + 0.592660I
b = 0.546774
5.29760 0
u = 0.358586 1.177180I
a = 0.452320 0.592660I
b = 0.546774
5.29760 0
u = 0.079378 + 1.237910I
a = 0.039508 1.412900I
b = 0.03322 + 1.55779I
10.40710 + 1.68405I 2.35516 3.83025I
u = 0.079378 1.237910I
a = 0.039508 + 1.412900I
b = 0.03322 1.55779I
10.40710 1.68405I 2.35516 + 3.83025I
u = 0.427343 + 1.165780I
a = 1.59551 0.97121I
b = 0.413689 + 0.761868I
7.50172 3.22031I 4.22079 + 4.90443I
u = 0.427343 1.165780I
a = 1.59551 + 0.97121I
b = 0.413689 0.761868I
7.50172 + 3.22031I 4.22079 4.90443I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.342862 + 1.204660I
a = 0.206543 1.311020I
b = 0.09185 + 1.62814I
12.43230 + 0.83337I 2.62647 + 0.I
u = 0.342862 1.204660I
a = 0.206543 + 1.311020I
b = 0.09185 1.62814I
12.43230 0.83337I 2.62647 + 0.I
u = 0.509144 + 1.151480I
a = 1.48273 0.79356I
b = 0.473302 + 0.738923I
3.12646 + 7.25342I 0. 7.25802I
u = 0.509144 1.151480I
a = 1.48273 + 0.79356I
b = 0.473302 0.738923I
3.12646 7.25342I 0. + 7.25802I
u = 0.467885 + 1.180690I
a = 2.63838 + 0.95680I
b = 0.11785 1.62483I
15.6700 + 5.2275I 5.66631 3.33432I
u = 0.467885 1.180690I
a = 2.63838 0.95680I
b = 0.11785 + 1.62483I
15.6700 5.2275I 5.66631 + 3.33432I
u = 0.728113 + 0.045864I
a = 1.54010 0.34391I
b = 0.09185 1.62814I
12.43230 0.83337I 2.62647 0.43888I
u = 0.728113 0.045864I
a = 1.54010 + 0.34391I
b = 0.09185 + 1.62814I
12.43230 + 0.83337I 2.62647 + 0.43888I
u = 0.351491 + 1.244020I
a = 0.034346 + 0.396365I
b = 0.413689 0.761868I
7.50172 + 3.22031I 0. 4.90443I
u = 0.351491 1.244020I
a = 0.034346 0.396365I
b = 0.413689 + 0.761868I
7.50172 3.22031I 0. + 4.90443I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.527069 + 1.185450I
a = 2.34188 + 0.80439I
b = 0.13674 1.61894I
11.1611 9.5466I 0. + 5.57899I
u = 0.527069 1.185450I
a = 2.34188 0.80439I
b = 0.13674 + 1.61894I
11.1611 + 9.5466I 0. 5.57899I
u = 0.684432 + 0.064859I
a = 1.217270 + 0.099029I
b = 0.324148 0.802707I
4.10703 + 0.74531I 1.080087 + 0.735219I
u = 0.684432 0.064859I
a = 1.217270 0.099029I
b = 0.324148 + 0.802707I
4.10703 0.74531I 1.080087 0.735219I
u = 0.365405 + 1.281630I
a = 0.171683 1.256090I
b = 0.11785 + 1.62483I
15.6700 5.2275I 0
u = 0.365405 1.281630I
a = 0.171683 + 1.256090I
b = 0.11785 1.62483I
15.6700 + 5.2275I 0
15
III. I
u
3
= hb + a + 1, a
2
+ au + 2a + u + 2, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
1
a
1
=
a
a 1
a
10
=
u
0
a
11
=
au a + 3u 1
a u + 1
a
8
=
u
u
a
3
=
1
1
a
2
=
a + 1
a 2
a
7
=
au
au u
a
12
=
2a + 1
a 1
a
6
=
2au a 2u 2
au + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u 1)
4
c
2
, c
4
, c
7
c
9
(u
2
+ 1)
2
c
3
u
4
c
5
, c
6
, c
11
c
12
u
4
+ 3u
2
+ 1
c
10
(u
2
+ u 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y 1)
4
c
2
, c
4
, c
7
c
9
(y + 1)
4
c
3
y
4
c
5
, c
6
, c
11
c
12
(y
2
+ 3y + 1)
2
c
10
(y
2
3y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.000000 + 0.618034I
b = 0.618034I
4.27683 8.00000
u = 1.000000I
a = 1.00000 1.61803I
b = 1.61803I
12.1725 8.00000
u = 1.000000I
a = 1.000000 0.618034I
b = 0.618034I
4.27683 8.00000
u = 1.000000I
a = 1.00000 + 1.61803I
b = 1.61803I
12.1725 8.00000
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
((u 1)
4
)(u
28
+ 14u
27
+ ··· + 3u + 1)(u
46
+ 27u
45
+ ··· + 44u + 25)
c
2
, c
4
, c
7
c
9
((u
2
+ 1)
2
)(u
28
+ 7u
26
+ ··· u + 1)(u
46
+ u
45
+ ··· + 6u + 5)
c
3
u
4
(u
23
+ u
22
+ ··· + 4u 5)
2
(u
28
3u
27
+ ··· 16u + 32)
c
5
, c
6
, c
11
c
12
(u
4
+ 3u
2
+ 1)(u
23
+ u
22
+ ··· 2u 1)
2
(u
28
3u
27
+ ··· 11u + 2)
c
10
((u
2
+ u 1)
2
)(u
23
7u
22
+ ··· + 40u 17)
2
· (u
28
9u
27
+ ··· 577u + 88)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
((y 1)
4
)(y
28
+ 6y
27
+ ··· + 7y + 1)(y
46
17y
45
+ ··· 11736y + 625)
c
2
, c
4
, c
7
c
9
((y + 1)
4
)(y
28
+ 14y
27
+ ··· + 3y + 1)(y
46
+ 27y
45
+ ··· + 44y + 25)
c
3
y
4
(y
23
17y
22
+ ··· 144y 25)
2
· (y
28
17y
27
+ ··· + 9472y + 1024)
c
5
, c
6
, c
11
c
12
((y
2
+ 3y + 1)
2
)(y
23
+ 27y
22
+ ··· 4y 1)
2
· (y
28
+ 33y
27
+ ··· y + 4)
c
10
((y
2
3y + 1)
2
)(y
23
9y
22
+ ··· + 1260y 289)
2
· (y
28
15y
27
+ ··· 37601y + 7744)
21