12a
0528
(K12a
0528
)
A knot diagram
1
Linearized knot diagam
3 7 8 10 9 2 1 12 11 5 4 6
Solving Sequence
4,10
5 11 12 9 6 1 8 3 7 2
c
4
c
10
c
11
c
9
c
5
c
12
c
8
c
3
c
7
c
2
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
90
+ 2u
89
+ ··· + 3u + 1i
I
u
2
= hu 1i
* 2 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
90
+ 2u
89
+ · · · + 3u + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
12
=
u
3
u
3
+ u
a
9
=
u
3
u
5
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
a
1
=
u
17
4u
15
+ 7u
13
4u
11
3u
9
+ 6u
7
2u
5
+ u
u
19
+ 5u
17
12u
15
+ 15u
13
9u
11
u
9
+ 4u
7
2u
5
u
3
+ u
a
8
=
u
11
+ 2u
9
2u
7
u
3
u
11
3u
9
+ 4u
7
u
5
u
3
+ u
a
3
=
u
22
+ 5u
20
12u
18
+ 15u
16
10u
14
+ 2u
12
u
8
+ u
6
u
4
+ 1
u
22
6u
20
+ 17u
18
26u
16
+ 20u
14
13u
10
+ 10u
8
u
6
2u
4
+ u
2
a
7
=
u
47
12u
45
+ ··· + 4u
7
2u
3
u
49
+ 13u
47
+ ··· 2u
3
+ u
a
2
=
u
63
16u
61
+ ··· 6u
7
+ 2u
3
u
63
+ 17u
61
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
89
96u
87
+ ··· + 8u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
90
+ 40u
89
+ ··· + u + 1
c
2
, c
6
u
90
20u
88
+ ··· u + 1
c
3
, c
12
u
90
+ 2u
89
+ ··· + 35u + 25
c
4
, c
10
u
90
+ 2u
89
+ ··· + 3u + 1
c
5
, c
11
u
90
+ 3u
89
+ ··· 37u + 13
c
7
u
90
3u
89
+ ··· 69u + 13
c
8
u
90
+ 14u
89
+ ··· + 26531u + 1493
c
9
u
90
48u
89
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
90
+ 20y
89
+ ··· 5y + 1
c
2
, c
6
y
90
40y
89
+ ··· y + 1
c
3
, c
12
y
90
72y
89
+ ··· + 675y + 625
c
4
, c
10
y
90
48y
89
+ ··· y + 1
c
5
, c
11
y
90
+ 75y
89
+ ··· 21571y + 169
c
7
y
90
+ 3y
89
+ ··· + 8941y + 169
c
8
y
90
24y
89
+ ··· 76057601y + 2229049
c
9
y
90
12y
89
+ ··· + 3y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.873411 + 0.513697I
1.81913 4.09974I 0
u = 0.873411 0.513697I
1.81913 + 4.09974I 0
u = 0.902181 + 0.525801I
2.99810 + 6.09081I 0
u = 0.902181 0.525801I
2.99810 6.09081I 0
u = 0.897963 + 0.536251I
1.02275 11.20450I 0
u = 0.897963 0.536251I
1.02275 + 11.20450I 0
u = 0.922566 + 0.496402I
3.48059 + 3.55498I 0
u = 0.922566 0.496402I
3.48059 3.55498I 0
u = 0.903572 + 0.276220I
0.20740 3.77187I 5.01166 + 7.48596I
u = 0.903572 0.276220I
0.20740 + 3.77187I 5.01166 7.48596I
u = 0.788143 + 0.520655I
4.28906 + 5.70288I 4.46481 8.34300I
u = 0.788143 0.520655I
4.28906 5.70288I 4.46481 + 8.34300I
u = 0.941169 + 0.480866I
1.91087 + 1.41955I 0
u = 0.941169 0.480866I
1.91087 1.41955I 0
u = 1.059210 + 0.019229I
6.75320 1.38707I 0
u = 1.059210 0.019229I
6.75320 + 1.38707I 0
u = 1.063040 + 0.035242I
4.97510 + 6.54466I 0
u = 1.063040 0.035242I
4.97510 6.54466I 0
u = 0.770968 + 0.482215I
1.57766 2.01209I 0.85760 + 4.47164I
u = 0.770968 0.482215I
1.57766 + 2.01209I 0.85760 4.47164I
u = 0.738456 + 0.517645I
4.43144 1.45967I 5.28174 + 0.47374I
u = 0.738456 0.517645I
4.43144 + 1.45967I 5.28174 0.47374I
u = 0.831064 + 0.096380I
1.270970 + 0.122716I 8.82726 0.42041I
u = 0.831064 0.096380I
1.270970 0.122716I 8.82726 + 0.42041I
u = 0.126989 + 0.822033I
4.77347 + 11.44800I 3.37132 7.61382I
u = 0.126989 0.822033I
4.77347 11.44800I 3.37132 + 7.61382I
u = 0.120864 + 0.820667I
6.74638 6.20589I 6.36909 + 3.29581I
u = 0.120864 0.820667I
6.74638 + 6.20589I 6.36909 3.29581I
u = 0.103336 + 0.819213I
7.26934 3.28559I 7.18981 + 2.93019I
u = 0.103336 0.819213I
7.26934 + 3.28559I 7.18981 2.93019I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.094198 + 0.819093I
5.74525 1.91608I 4.94203 + 2.18879I
u = 0.094198 0.819093I
5.74525 + 1.91608I 4.94203 2.18879I
u = 0.120401 + 0.803953I
1.59070 + 4.18357I 0.16117 3.00795I
u = 0.120401 0.803953I
1.59070 4.18357I 0.16117 + 3.00795I
u = 0.578569 + 0.559212I
0.13368 + 6.80952I 0.27186 4.68036I
u = 0.578569 0.559212I
0.13368 6.80952I 0.27186 + 4.68036I
u = 0.620498 + 0.503672I
2.52931 0.09500I 4.25506 + 0.72855I
u = 0.620498 0.503672I
2.52931 + 0.09500I 4.25506 0.72855I
u = 1.130970 + 0.433801I
0.70255 4.46851I 0
u = 1.130970 0.433801I
0.70255 + 4.46851I 0
u = 1.152640 + 0.389106I
1.84992 + 2.50588I 0
u = 1.152640 0.389106I
1.84992 2.50588I 0
u = 0.561042 + 0.544183I
2.05754 1.76920I 2.90604 + 0.28243I
u = 0.561042 0.544183I
2.05754 + 1.76920I 2.90604 0.28243I
u = 1.162250 + 0.412550I
4.17297 + 1.71901I 0
u = 1.162250 0.412550I
4.17297 1.71901I 0
u = 0.024292 + 0.753892I
2.47216 + 2.13571I 5.91843 3.73421I
u = 0.024292 0.753892I
2.47216 2.13571I 5.91843 + 3.73421I
u = 1.152150 + 0.484969I
0.27112 + 3.48997I 0
u = 1.152150 0.484969I
0.27112 3.48997I 0
u = 0.153502 + 0.729188I
1.85254 6.16807I 1.72016 + 7.05399I
u = 0.153502 0.729188I
1.85254 + 6.16807I 1.72016 7.05399I
u = 1.170070 + 0.486533I
3.64084 6.60935I 0
u = 1.170070 0.486533I
3.64084 + 6.60935I 0
u = 1.167280 + 0.498284I
1.08161 + 10.76960I 0
u = 1.167280 0.498284I
1.08161 10.76960I 0
u = 1.191320 + 0.443194I
5.96752 + 2.13257I 0
u = 1.191320 0.443194I
5.96752 2.13257I 0
u = 1.213250 + 0.391111I
5.57380 0.11285I 0
u = 1.213250 0.391111I
5.57380 + 0.11285I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.116850 + 0.712914I
0.62172 + 2.11128I 2.36589 3.42722I
u = 0.116850 0.712914I
0.62172 2.11128I 2.36589 + 3.42722I
u = 1.191720 + 0.461019I
5.84080 6.54472I 0
u = 1.191720 0.461019I
5.84080 + 6.54472I 0
u = 0.485978 + 0.528952I
2.30152 + 0.59676I 3.38135 0.44638I
u = 0.485978 0.528952I
2.30152 0.59676I 3.38135 + 0.44638I
u = 1.224080 + 0.384721I
8.85923 7.34311I 0
u = 1.224080 0.384721I
8.85923 + 7.34311I 0
u = 1.223690 + 0.388798I
10.80400 + 2.07981I 0
u = 1.223690 0.388798I
10.80400 2.07981I 0
u = 1.223810 + 0.399626I
11.25850 0.90671I 0
u = 1.223810 0.399626I
11.25850 + 0.90671I 0
u = 1.224080 + 0.404848I
9.70226 + 6.14308I 0
u = 1.224080 0.404848I
9.70226 6.14308I 0
u = 0.450612 + 0.548105I
0.55266 5.54561I 0.22267 + 5.35237I
u = 0.450612 0.548105I
0.55266 + 5.54561I 0.22267 5.35237I
u = 1.197770 + 0.505207I
4.76470 8.98285I 0
u = 1.197770 0.505207I
4.76470 + 8.98285I 0
u = 1.208040 + 0.497568I
9.04174 2.87641I 0
u = 1.208040 0.497568I
9.04174 + 2.87641I 0
u = 1.206570 + 0.501359I
10.53440 + 8.09975I 0
u = 1.206570 0.501359I
10.53440 8.09975I 0
u = 1.203810 + 0.508612I
9.9530 + 11.0635I 0
u = 1.203810 0.508612I
9.9530 11.0635I 0
u = 1.203080 + 0.511255I
7.9613 16.3232I 0
u = 1.203080 0.511255I
7.9613 + 16.3232I 0
u = 0.164684 + 0.661302I
2.55538 + 0.91259I 3.81773 0.78733I
u = 0.164684 0.661302I
2.55538 0.91259I 3.81773 + 0.78733I
u = 0.299147 + 0.470065I
1.76511 + 0.79975I 3.82418 0.77073I
u = 0.299147 0.470065I
1.76511 0.79975I 3.82418 + 0.77073I
7
II. I
u
2
= hu 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
11
=
1
0
a
12
=
1
0
a
9
=
1
1
a
6
=
1
1
a
1
=
2
1
a
8
=
2
1
a
3
=
1
1
a
7
=
2
1
a
2
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u + 1
c
2
, c
3
, c
4
c
6
, c
8
, c
9
c
10
, c
12
u 1
c
5
, c
7
, c
11
u
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
8
c
9
, c
10
, c
12
y 1
c
5
, c
7
, c
11
y
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
1.64493 6.00000
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
90
+ 40u
89
+ ··· + u + 1)
c
2
, c
6
(u 1)(u
90
20u
88
+ ··· u + 1)
c
3
, c
12
(u 1)(u
90
+ 2u
89
+ ··· + 35u + 25)
c
4
, c
10
(u 1)(u
90
+ 2u
89
+ ··· + 3u + 1)
c
5
, c
11
u(u
90
+ 3u
89
+ ··· 37u + 13)
c
7
u(u
90
3u
89
+ ··· 69u + 13)
c
8
(u 1)(u
90
+ 14u
89
+ ··· + 26531u + 1493)
c
9
(u 1)(u
90
48u
89
+ ··· u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
90
+ 20y
89
+ ··· 5y + 1)
c
2
, c
6
(y 1)(y
90
40y
89
+ ··· y + 1)
c
3
, c
12
(y 1)(y
90
72y
89
+ ··· + 675y + 625)
c
4
, c
10
(y 1)(y
90
48y
89
+ ··· y + 1)
c
5
, c
11
y(y
90
+ 75y
89
+ ··· 21571y + 169)
c
7
y(y
90
+ 3y
89
+ ··· + 8941y + 169)
c
8
(y 1)(y
90
24y
89
+ ··· 7.60576 × 10
7
y + 2229049)
c
9
(y 1)(y
90
12y
89
+ ··· + 3y + 1)
13