10
48
(K10a
79
)
A knot diagram
1
Linearized knot diagam
4 7 1 2 9 10 3 5 6 8
Solving Sequence
5,8
9 6 10
1,3
7 2 4
c
8
c
5
c
9
c
10
c
7
c
2
c
4
c
1
, c
3
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
25
14u
23
+ ··· + b 1, u
24
+ u
23
+ ··· + a + 2, u
26
2u
25
+ ··· + 3u + 1i
I
u
2
= hb, a u 1, u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
25
14u
23
+· · ·+b1, u
24
+u
23
+· · ·+a+2, u
26
2u
25
+· · ·+3u+1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
6
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
1
=
u
4
3u
2
+ 1
u
4
2u
2
a
3
=
u
24
u
23
+ ··· + 4u 2
u
25
+ 14u
23
+ ··· + 5u + 1
a
7
=
u
3
+ 2u
u
5
3u
3
+ u
a
2
=
u
24
u
23
+ ··· + u 3
u
25
14u
23
+ ··· 2u 1
a
4
=
u
24
u
23
+ ··· + 2u 2
u
14
8u
12
+ ··· u
2
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
24
u
23
41u
22
+ 8u
21
+ 237u
20
2u
19
754u
18
180u
17
+
1435u
16
+ 802u
15
1634u
14
1608u
13
+ 954u
12
+ 1718u
11
+ 24u
10
1034u
9
412u
8
+
379u
7
+ 265u
6
70u
5
147u
4
+ 10u
3
+ 32u
2
+ 18u 7
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
26
3u
25
+ ··· 9u
2
1
c
2
, c
7
u
26
u
25
+ ··· + 17u
2
4
c
5
, c
6
, c
8
c
9
u
26
2u
25
+ ··· + 3u + 1
c
10
u
26
+ 6u
25
+ ··· + 57u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
26
25y
25
+ ··· + 18y + 1
c
2
, c
7
y
26
15y
25
+ ··· 136y + 16
c
5
, c
6
, c
8
c
9
y
26
30y
25
+ ··· 19y + 1
c
10
y
26
+ 6y
25
+ ··· 3159y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.668864 + 0.598628I
a = 1.61808 + 1.14418I
b = 1.31336 0.55274I
6.97144 7.45946I 3.34661 + 6.43325I
u = 0.668864 0.598628I
a = 1.61808 1.14418I
b = 1.31336 + 0.55274I
6.97144 + 7.45946I 3.34661 6.43325I
u = 1.198900 + 0.140779I
a = 0.217750 0.235577I
b = 1.276500 0.100979I
3.39138 0.04941I 2.26185 0.23755I
u = 1.198900 0.140779I
a = 0.217750 + 0.235577I
b = 1.276500 + 0.100979I
3.39138 + 0.04941I 2.26185 + 0.23755I
u = 0.586941 + 0.484436I
a = 1.86292 1.18885I
b = 1.051360 + 0.358584I
0.89453 3.84444I 0.49259 + 7.28090I
u = 0.586941 0.484436I
a = 1.86292 + 1.18885I
b = 1.051360 0.358584I
0.89453 + 3.84444I 0.49259 7.28090I
u = 0.283620 + 0.683381I
a = 1.65331 0.64793I
b = 1.330650 0.398492I
8.11148 + 3.15061I 5.88075 0.93673I
u = 0.283620 0.683381I
a = 1.65331 + 0.64793I
b = 1.330650 + 0.398492I
8.11148 3.15061I 5.88075 + 0.93673I
u = 0.486887 + 0.485193I
a = 0.722742 0.089263I
b = 0.151101 1.041920I
3.27468 + 1.70414I 2.66466 3.89699I
u = 0.486887 0.485193I
a = 0.722742 + 0.089263I
b = 0.151101 + 1.041920I
3.27468 1.70414I 2.66466 + 3.89699I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.622264 + 0.175930I
a = 0.280102 0.073287I
b = 0.338732 + 0.457385I
1.166700 + 0.399409I 7.28789 1.42640I
u = 0.622264 0.175930I
a = 0.280102 + 0.073287I
b = 0.338732 0.457385I
1.166700 0.399409I 7.28789 + 1.42640I
u = 0.345528 + 0.459270I
a = 2.06279 + 0.67901I
b = 0.939749 + 0.103171I
1.59551 + 0.48344I 4.02832 + 0.08458I
u = 0.345528 0.459270I
a = 2.06279 0.67901I
b = 0.939749 0.103171I
1.59551 0.48344I 4.02832 0.08458I
u = 1.51750 + 0.08533I
a = 1.165270 + 0.679850I
b = 1.069430 0.265042I
4.66926 + 1.10360I 0.162083 0.384354I
u = 1.51750 0.08533I
a = 1.165270 0.679850I
b = 1.069430 + 0.265042I
4.66926 1.10360I 0.162083 + 0.384354I
u = 1.53355 + 0.12553I
a = 0.351346 + 0.586908I
b = 0.393229 1.143620I
3.48759 3.82064I 0.89607 + 2.40126I
u = 1.53355 0.12553I
a = 0.351346 0.586908I
b = 0.393229 + 1.143620I
3.48759 + 3.82064I 0.89607 2.40126I
u = 1.56506 + 0.13930I
a = 0.92214 1.07989I
b = 1.134790 + 0.523946I
6.35171 + 6.10679I 2.97747 5.14405I
u = 1.56506 0.13930I
a = 0.92214 + 1.07989I
b = 1.134790 0.523946I
6.35171 6.10679I 2.97747 + 5.14405I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58442 + 0.05231I
a = 0.214222 0.374662I
b = 0.346659 + 0.743600I
8.75625 1.27302I 7.34031 + 0.88258I
u = 1.58442 0.05231I
a = 0.214222 + 0.374662I
b = 0.346659 0.743600I
8.75625 + 1.27302I 7.34031 0.88258I
u = 1.59031 + 0.18503I
a = 0.687931 + 1.166390I
b = 1.28311 0.68193I
0.59945 + 10.37890I 0.23306 5.66856I
u = 1.59031 0.18503I
a = 0.687931 1.166390I
b = 1.28311 + 0.68193I
0.59945 10.37890I 0.23306 + 5.66856I
u = 1.67318
a = 0.394205
b = 0.856853
6.22196 3.01540
u = 0.282820
a = 3.31419
b = 0.465579
1.22611 10.4970
7
II. I
u
2
= hb, a u 1, u
2
+ u 1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u 1
a
6
=
u
u + 1
a
10
=
u
u
a
1
=
0
u
a
3
=
u + 1
0
a
7
=
1
0
a
2
=
u + 1
0
a
4
=
u + 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
7
u
2
c
3
, c
4
(u + 1)
2
c
5
, c
6
u
2
u 1
c
8
, c
9
, c
10
u
2
+ u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
2
c
2
, c
7
y
2
c
5
, c
6
, c
8
c
9
, c
10
y
2
3y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
0.657974 5.00000
u = 1.61803
a = 0.618034
b = 0
7.23771 5.00000
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
26
3u
25
+ ··· 9u
2
1)
c
2
, c
7
u
2
(u
26
u
25
+ ··· + 17u
2
4)
c
3
, c
4
((u + 1)
2
)(u
26
3u
25
+ ··· 9u
2
1)
c
5
, c
6
(u
2
u 1)(u
26
2u
25
+ ··· + 3u + 1)
c
8
, c
9
(u
2
+ u 1)(u
26
2u
25
+ ··· + 3u + 1)
c
10
(u
2
+ u 1)(u
26
+ 6u
25
+ ··· + 57u 9)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
((y 1)
2
)(y
26
25y
25
+ ··· + 18y + 1)
c
2
, c
7
y
2
(y
26
15y
25
+ ··· 136y + 16)
c
5
, c
6
, c
8
c
9
(y
2
3y + 1)(y
26
30y
25
+ ··· 19y + 1)
c
10
(y
2
3y + 1)(y
26
+ 6y
25
+ ··· 3159y + 81)
13