12a
0538
(K12a
0538
)
A knot diagram
1
Linearized knot diagam
3 7 8 10 11 12 2 1 4 5 6 9
Solving Sequence
2,8
7 3 4 1 9 10 5 12 6 11
c
7
c
2
c
3
c
1
c
8
c
9
c
4
c
12
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
41
u
40
+ ··· 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
41
u
40
+ · · · 3u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
8
+ u
6
+ u
4
+ 1
u
10
+ 2u
8
+ 3u
6
+ 2u
4
+ u
2
a
10
=
u
16
3u
14
5u
12
4u
10
u
8
+ 1
u
16
+ 4u
14
+ 8u
12
+ 10u
10
+ 8u
8
+ 6u
6
+ 4u
4
+ 2u
2
a
5
=
u
29
+ 6u
27
+ ··· 2u
3
u
u
29
7u
27
+ ··· u
3
+ u
a
12
=
u
13
+ 2u
11
+ 3u
9
+ 2u
7
+ 2u
5
+ 2u
3
+ u
u
15
+ 3u
13
+ 6u
11
+ 7u
9
+ 6u
7
+ 4u
5
+ 2u
3
+ u
a
6
=
u
26
5u
24
+ ··· u
2
+ 1
u
28
6u
26
+ ··· 8u
6
3u
4
a
11
=
u
39
8u
37
+ ··· + 2u
3
+ 2u
u
40
+ u
39
+ ··· 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
39
+4u
38
36u
37
+36u
36
168u
35
+172u
34
520u
33
+548u
32
1184u
31
+1284u
30
2104u
29
+ 2324u
28
3052u
27
+ 3364u
26
3756u
25
+ 4012u
24
4040u
23
+ 4072u
22
3848u
21
+3628u
20
3236u
19
+2888u
18
2396u
17
+2040u
16
1584u
15
+1260u
14
944u
13
+
676u
12
484u
11
+312u
10
188u
9
+100u
8
52u
7
+8u
6
8u
5
12u
4
+12u
3
8u
2
+12u18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
41
+ 19u
40
+ ··· + 5u 1
c
2
, c
7
u
41
+ u
40
+ ··· 3u 1
c
3
u
41
u
40
+ ··· + 7u 5
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
41
+ u
40
+ ··· 3u 1
c
8
, c
12
u
41
+ 5u
40
+ ··· 161u 39
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
41
+ 7y
40
+ ··· + 61y 1
c
2
, c
7
y
41
+ 19y
40
+ ··· + 5y 1
c
3
y
41
5y
40
+ ··· + 869y 25
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
41
57y
40
+ ··· + 5y 1
c
8
, c
12
y
41
+ 23y
40
+ ··· 3563y 1521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.184893 + 0.994464I
1.51339 0.94191I 13.19182 + 4.87111I
u = 0.184893 0.994464I
1.51339 + 0.94191I 13.19182 4.87111I
u = 0.326237 + 0.909164I
0.68099 1.40662I 7.42529 + 4.24722I
u = 0.326237 0.909164I
0.68099 + 1.40662I 7.42529 4.24722I
u = 0.704783 + 0.594687I
11.28020 3.60891I 10.18311 + 3.00606I
u = 0.704783 0.594687I
11.28020 + 3.60891I 10.18311 3.00606I
u = 0.178198 + 1.087930I
6.59012 + 2.77027I 17.1418 2.7652I
u = 0.178198 1.087930I
6.59012 2.77027I 17.1418 + 2.7652I
u = 0.416484 + 1.021060I
2.94716 + 3.14297I 16.2536 6.2768I
u = 0.416484 1.021060I
2.94716 3.14297I 16.2536 + 6.2768I
u = 0.682369 + 0.551619I
1.05424 + 2.63533I 9.41238 3.91934I
u = 0.682369 0.551619I
1.05424 2.63533I 9.41238 + 3.91934I
u = 0.782799 + 0.379135I
12.41790 6.21468I 11.22155 + 2.89024I
u = 0.782799 0.379135I
12.41790 + 6.21468I 11.22155 2.89024I
u = 0.176585 + 1.127330I
17.3002 3.7251I 17.4761 + 1.6666I
u = 0.176585 1.127330I
17.3002 + 3.7251I 17.4761 1.6666I
u = 0.755772 + 0.394629I
1.86778 + 5.03167I 10.41788 4.02250I
u = 0.755772 0.394629I
1.86778 5.03167I 10.41788 + 4.02250I
u = 0.606936 + 0.980785I
12.42340 1.42472I 12.03958 + 2.60670I
u = 0.606936 0.980785I
12.42340 + 1.42472I 12.03958 2.60670I
u = 0.695732 + 0.480590I
3.22968 0.39612I 4.26312 + 3.61739I
u = 0.695732 0.480590I
3.22968 + 0.39612I 4.26312 3.61739I
u = 0.722948 + 0.432712I
2.97485 2.70484I 5.59126 + 4.77948I
u = 0.722948 0.432712I
2.97485 + 2.70484I 5.59126 4.77948I
u = 0.575889 + 1.009940I
2.41083 + 2.23503I 11.92132 1.73873I
u = 0.575889 1.009940I
2.41083 2.23503I 11.92132 + 1.73873I
u = 0.421289 + 1.102850I
8.91985 3.72236I 18.4297 + 4.1960I
u = 0.421289 1.102850I
8.91985 + 3.72236I 18.4297 4.1960I
u = 0.578382 + 1.056610I
1.52744 4.51839I 7.10529 + 1.88338I
u = 0.578382 1.056610I
1.52744 + 4.51839I 7.10529 1.88338I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.421891 + 1.134710I
19.4645 + 3.9367I 18.3892 3.6616I
u = 0.421891 1.134710I
19.4645 3.9367I 18.3892 + 3.6616I
u = 0.582220 + 1.082150I
1.06240 + 7.69869I 9.15502 9.24426I
u = 0.582220 1.082150I
1.06240 7.69869I 9.15502 + 9.24426I
u = 0.584962 + 1.104120I
3.95871 10.11040I 13.5525 + 8.1060I
u = 0.584962 1.104120I
3.95871 + 10.11040I 13.5525 8.1060I
u = 0.589263 + 1.117610I
14.6038 + 11.3740I 14.2742 6.8674I
u = 0.589263 1.117610I
14.6038 11.3740I 14.2742 + 6.8674I
u = 0.681978
16.8040 14.2280
u = 0.606927
5.94459 14.4600
u = 0.358849
0.680410 14.4230
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
41
+ 19u
40
+ ··· + 5u 1
c
2
, c
7
u
41
+ u
40
+ ··· 3u 1
c
3
u
41
u
40
+ ··· + 7u 5
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
41
+ u
40
+ ··· 3u 1
c
8
, c
12
u
41
+ 5u
40
+ ··· 161u 39
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
41
+ 7y
40
+ ··· + 61y 1
c
2
, c
7
y
41
+ 19y
40
+ ··· + 5y 1
c
3
y
41
5y
40
+ ··· + 869y 25
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
41
57y
40
+ ··· + 5y 1
c
8
, c
12
y
41
+ 23y
40
+ ··· 3563y 1521
8