12a
0541
(K12a
0541
)
A knot diagram
1
Linearized knot diagam
3 7 8 10 11 1 2 6 12 5 4 9
Solving Sequence
4,10
5 11 6 12 9 1 7 8 3 2
c
4
c
10
c
5
c
11
c
9
c
12
c
6
c
8
c
3
c
2
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
76
u
75
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
76
u
75
+ · · · 2u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
12
=
u
3
2u
u
3
+ u
a
9
=
u
7
+ 4u
5
4u
3
u
7
3u
5
+ 2u
3
+ u
a
1
=
u
11
6u
9
+ 12u
7
8u
5
+ u
3
2u
u
11
+ 5u
9
8u
7
+ 3u
5
+ u
3
+ u
a
7
=
u
26
13u
24
+ ··· 3u
2
+ 1
u
26
+ 12u
24
+ ··· + 4u
4
+ 3u
2
a
8
=
u
13
6u
11
+ 13u
9
12u
7
+ 6u
5
4u
3
+ u
u
15
7u
13
+ 18u
11
19u
9
+ 6u
7
2u
5
+ 4u
3
+ u
a
3
=
u
28
+ 13u
26
+ ··· u
2
+ 1
u
30
+ 14u
28
+ ··· 8u
4
u
2
a
2
=
u
69
32u
67
+ ··· + 4u
3
3u
u
71
33u
69
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
74
+ 140u
72
+ ··· 20u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
76
+ 41u
75
+ ··· + 2u + 1
c
2
, c
7
u
76
+ u
75
+ ··· 2u 1
c
3
, c
6
u
76
u
75
+ ··· + u 2
c
4
, c
5
, c
10
u
76
u
75
+ ··· 2u 1
c
8
u
76
11u
75
+ ··· 5222u + 701
c
9
, c
12
u
76
+ 11u
75
+ ··· + 28u + 1
c
11
u
76
+ 3u
75
+ ··· + 1213u + 264
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
76
11y
75
+ ··· 10y + 1
c
2
, c
7
y
76
+ 41y
75
+ ··· + 2y + 1
c
3
, c
6
y
76
63y
75
+ ··· + 659y + 4
c
4
, c
5
, c
10
y
76
71y
75
+ ··· + 2y + 1
c
8
y
76
23y
75
+ ··· + 1083362y + 491401
c
9
, c
12
y
76
+ 65y
75
+ ··· + 174y + 1
c
11
y
76
27y
75
+ ··· 2910169y + 69696
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.129570 + 0.058336I
4.97762 + 3.97568I 0
u = 1.129570 0.058336I
4.97762 3.97568I 0
u = 0.407771 + 0.685752I
8.10020 + 11.53670I 9.08879 9.10866I
u = 0.407771 0.685752I
8.10020 11.53670I 9.08879 + 9.10866I
u = 0.419176 + 0.676793I
8.93857 + 2.57784I 10.57384 2.81236I
u = 0.419176 0.676793I
8.93857 2.57784I 10.57384 + 2.81236I
u = 0.408279 + 0.677761I
4.89911 6.69327I 6.12847 + 6.07369I
u = 0.408279 0.677761I
4.89911 + 6.69327I 6.12847 6.07369I
u = 1.207110 + 0.068967I
2.20534 + 0.18555I 0
u = 1.207110 0.068967I
2.20534 0.18555I 0
u = 0.510556 + 0.594333I
9.30162 + 1.64723I 11.54189 3.42806I
u = 0.510556 0.594333I
9.30162 1.64723I 11.54189 + 3.42806I
u = 0.525486 + 0.580123I
8.56487 7.31358I 10.37548 + 3.04110I
u = 0.525486 0.580123I
8.56487 + 7.31358I 10.37548 3.04110I
u = 0.513447 + 0.579259I
5.32440 + 2.51244I 7.37553 + 0.12238I
u = 0.513447 0.579259I
5.32440 2.51244I 7.37553 0.12238I
u = 1.228120 + 0.155356I
0.704039 + 0.729510I 0
u = 1.228120 0.155356I
0.704039 0.729510I 0
u = 0.437056 + 0.615667I
4.91083 2.00981I 11.92334 + 3.56643I
u = 0.437056 0.615667I
4.91083 + 2.00981I 11.92334 3.56643I
u = 0.378099 + 0.650366I
1.22584 6.60011I 4.55940 + 9.49229I
u = 0.378099 0.650366I
1.22584 + 6.60011I 4.55940 9.49229I
u = 1.251120 + 0.181533I
0.98838 4.93235I 0
u = 1.251120 0.181533I
0.98838 + 4.93235I 0
u = 0.369878 + 0.620118I
0.32504 + 2.32288I 2.23390 3.34531I
u = 0.369878 0.620118I
0.32504 2.32288I 2.23390 + 3.34531I
u = 0.468281 + 0.522087I
1.69233 + 2.73838I 6.28797 2.96483I
u = 0.468281 0.522087I
1.69233 2.73838I 6.28797 + 2.96483I
u = 1.297680 + 0.207212I
3.63192 5.27853I 0
u = 1.297680 0.207212I
3.63192 + 5.27853I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.298360 + 0.222658I
6.62865 + 9.91898I 0
u = 1.298360 0.222658I
6.62865 9.91898I 0
u = 0.392192 + 0.540420I
0.60258 + 1.29930I 2.99429 4.00556I
u = 0.392192 0.540420I
0.60258 1.29930I 2.99429 + 4.00556I
u = 1.332200 + 0.082576I
5.20037 2.33630I 0
u = 1.332200 0.082576I
5.20037 + 2.33630I 0
u = 1.322740 + 0.206079I
7.40445 + 1.51044I 0
u = 1.322740 0.206079I
7.40445 1.51044I 0
u = 0.115466 + 0.633886I
2.23974 6.80539I 3.37563 + 7.46153I
u = 0.115466 0.633886I
2.23974 + 6.80539I 3.37563 7.46153I
u = 0.160023 + 0.605492I
2.77984 + 1.43036I 4.77413 + 1.09094I
u = 0.160023 0.605492I
2.77984 1.43036I 4.77413 1.09094I
u = 0.108605 + 0.604765I
0.72734 + 2.31908I 0.35171 4.52916I
u = 0.108605 0.604765I
0.72734 2.31908I 0.35171 + 4.52916I
u = 0.022641 + 0.605334I
2.88084 + 2.05802I 3.35262 4.47738I
u = 0.022641 0.605334I
2.88084 2.05802I 3.35262 + 4.47738I
u = 0.594523 + 0.069708I
4.74365 4.17508I 10.50247 + 4.04595I
u = 0.594523 0.069708I
4.74365 + 4.17508I 10.50247 4.04595I
u = 1.40287
7.32649 0
u = 1.41514 + 0.01222I
10.81790 + 4.39921I 0
u = 1.41514 0.01222I
10.81790 4.39921I 0
u = 1.44452 + 0.21346I
6.49200 4.13146I 0
u = 1.44452 0.21346I
6.49200 + 4.13146I 0
u = 1.44563 + 0.23471I
6.16565 5.46517I 0
u = 1.44563 0.23471I
6.16565 + 5.46517I 0
u = 1.45145 + 0.19655I
7.80075 0.09297I 0
u = 1.45145 0.19655I
7.80075 + 0.09297I 0
u = 1.45021 + 0.24403I
7.10735 + 9.87358I 0
u = 1.45021 0.24403I
7.10735 9.87358I 0
u = 1.46455 + 0.22474I
11.03500 + 5.08747I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46455 0.22474I
11.03500 5.08747I 0
u = 0.513999
1.50213 7.67860
u = 1.46465 + 0.25115I
10.9355 + 10.0869I 0
u = 1.46465 0.25115I
10.9355 10.0869I 0
u = 1.46564 + 0.25429I
14.1388 14.9696I 0
u = 1.46564 0.25429I
14.1388 + 14.9696I 0
u = 1.46860 + 0.24901I
15.0275 5.9593I 0
u = 1.46860 0.24901I
15.0275 + 5.9593I 0
u = 1.47894 + 0.19668I
11.75090 + 0.29241I 0
u = 1.47894 0.19668I
11.75090 0.29241I 0
u = 1.48245 + 0.19353I
15.0493 + 4.5269I 0
u = 1.48245 0.19353I
15.0493 4.5269I 0
u = 1.48205 + 0.20161I
15.7399 4.5270I 0
u = 1.48205 0.20161I
15.7399 + 4.5270I 0
u = 0.281496 + 0.293923I
0.389765 + 1.018260I 6.12831 6.36732I
u = 0.281496 0.293923I
0.389765 1.018260I 6.12831 + 6.36732I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
76
+ 41u
75
+ ··· + 2u + 1
c
2
, c
7
u
76
+ u
75
+ ··· 2u 1
c
3
, c
6
u
76
u
75
+ ··· + u 2
c
4
, c
5
, c
10
u
76
u
75
+ ··· 2u 1
c
8
u
76
11u
75
+ ··· 5222u + 701
c
9
, c
12
u
76
+ 11u
75
+ ··· + 28u + 1
c
11
u
76
+ 3u
75
+ ··· + 1213u + 264
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
76
11y
75
+ ··· 10y + 1
c
2
, c
7
y
76
+ 41y
75
+ ··· + 2y + 1
c
3
, c
6
y
76
63y
75
+ ··· + 659y + 4
c
4
, c
5
, c
10
y
76
71y
75
+ ··· + 2y + 1
c
8
y
76
23y
75
+ ··· + 1083362y + 491401
c
9
, c
12
y
76
+ 65y
75
+ ··· + 174y + 1
c
11
y
76
27y
75
+ ··· 2910169y + 69696
9