12a
0545
(K12a
0545
)
A knot diagram
1
Linearized knot diagam
3 7 8 10 1 2 6 12 11 5 9 4
Solving Sequence
5,11
10 4 9 12 1 6 8 3 7 2
c
10
c
4
c
9
c
11
c
12
c
5
c
8
c
3
c
7
c
2
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
71
u
70
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
71
u
70
+ · · · + 2u 1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
u
2
+ 1
u
4
a
1
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
10
2u
8
+ 3u
6
4u
4
+ u
2
a
6
=
u
17
+ 2u
15
7u
13
+ 10u
11
15u
9
+ 14u
7
10u
5
+ 4u
3
u
u
19
+ 3u
17
8u
15
+ 15u
13
19u
11
+ 21u
9
14u
7
+ 6u
5
u
3
+ u
a
8
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
3
=
u
15
+ 2u
13
6u
11
+ 8u
9
10u
7
+ 8u
5
4u
3
u
15
u
13
+ 4u
11
3u
9
+ 4u
7
2u
5
+ u
a
7
=
u
42
5u
40
+ ··· u
2
+ 1
u
44
6u
42
+ ··· 12u
6
+ 3u
4
a
2
=
u
40
+ 5u
38
+ ··· 2u
2
+ 1
u
40
4u
38
+ ··· 6u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
69
4u
68
+ ··· 8u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
71
+ 25u
70
+ ··· + 4u + 1
c
2
, c
6
u
71
u
70
+ ··· 2u + 1
c
3
, c
5
u
71
+ u
70
+ ··· 406u + 97
c
4
, c
10
u
71
+ u
70
+ ··· + 2u + 1
c
8
, c
9
, c
11
u
71
17u
70
+ ··· + 4u 1
c
12
u
71
7u
70
+ ··· + 13008u 6545
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
71
+ 43y
70
+ ··· 20y 1
c
2
, c
6
y
71
25y
70
+ ··· + 4y 1
c
3
, c
5
y
71
53y
70
+ ··· + 348748y 9409
c
4
, c
10
y
71
17y
70
+ ··· + 4y 1
c
8
, c
9
, c
11
y
71
+ 75y
70
+ ··· 20y 1
c
12
y
71
25y
70
+ ··· + 292384964y 42837025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.888190 + 0.459117I
1.18643 + 1.35824I 0
u = 0.888190 0.459117I
1.18643 1.35824I 0
u = 0.932507 + 0.429015I
4.68486 4.91394I 0. + 6.57071I
u = 0.932507 0.429015I
4.68486 + 4.91394I 0. 6.57071I
u = 0.948249 + 0.398634I
1.14717 + 5.67185I 0. 6.12958I
u = 0.948249 0.398634I
1.14717 5.67185I 0. + 6.12958I
u = 0.929272 + 0.279545I
5.07424 + 5.34453I 4.69472 7.85817I
u = 0.929272 0.279545I
5.07424 5.34453I 4.69472 + 7.85817I
u = 0.880577 + 0.406341I
0.12671 + 3.47465I 0.94229 7.22764I
u = 0.880577 0.406341I
0.12671 3.47465I 0.94229 + 7.22764I
u = 0.924346 + 0.256884I
5.20330 + 0.14255I 5.40218 + 1.47024I
u = 0.924346 0.256884I
5.20330 0.14255I 5.40218 1.47024I
u = 0.957821 + 0.407226I
0.08969 11.18150I 0. + 10.67896I
u = 0.957821 0.407226I
0.08969 + 11.18150I 0. 10.67896I
u = 0.930800 + 0.073679I
1.75758 5.86547I 1.99827 + 4.58778I
u = 0.930800 0.073679I
1.75758 + 5.86547I 1.99827 4.58778I
u = 0.909390 + 0.093581I
2.83229 + 0.49914I 4.26447 + 0.53477I
u = 0.909390 0.093581I
2.83229 0.49914I 4.26447 0.53477I
u = 0.904521
2.42702 3.10240
u = 0.795537 + 0.390577I
0.09323 + 3.30566I 3.55215 8.38260I
u = 0.795537 0.390577I
0.09323 3.30566I 3.55215 + 8.38260I
u = 0.848471 + 0.801057I
1.23479 + 2.37348I 0
u = 0.848471 0.801057I
1.23479 2.37348I 0
u = 0.838168 + 0.814555I
1.68823 + 3.12709I 0
u = 0.838168 0.814555I
1.68823 3.12709I 0
u = 0.791932 + 0.194909I
1.33858 0.61168I 4.64664 + 0.66052I
u = 0.791932 0.194909I
1.33858 + 0.61168I 4.64664 0.66052I
u = 0.898302 + 0.814123I
4.44129 + 3.04587I 0
u = 0.898302 0.814123I
4.44129 3.04587I 0
u = 0.931885 + 0.786659I
0.98086 + 3.59426I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.931885 0.786659I
0.98086 3.59426I 0
u = 0.842926 + 0.883227I
7.08254 + 3.13913I 0
u = 0.842926 0.883227I
7.08254 3.13913I 0
u = 0.883855 + 0.842412I
7.07816 0.45998I 0
u = 0.883855 0.842412I
7.07816 + 0.45998I 0
u = 0.841752 + 0.887983I
8.44517 8.69967I 0
u = 0.841752 0.887983I
8.44517 + 8.69967I 0
u = 0.859891 + 0.876442I
7.92925 + 0.36652I 0
u = 0.859891 0.876442I
7.92925 0.36652I 0
u = 0.941693 + 0.791316I
1.37335 9.14747I 0
u = 0.941693 0.791316I
1.37335 + 9.14747I 0
u = 0.853282 + 0.887433I
13.09820 2.09748I 0
u = 0.853282 0.887433I
13.09820 + 2.09748I 0
u = 0.866419 + 0.882936I
9.56950 + 4.65253I 0
u = 0.866419 0.882936I
9.56950 4.65253I 0
u = 0.923308 + 0.829910I
6.95620 5.76655I 0
u = 0.923308 0.829910I
6.95620 + 5.76655I 0
u = 0.414794 + 0.619267I
2.66917 5.34133I 7.85683 + 5.45983I
u = 0.414794 0.619267I
2.66917 + 5.34133I 7.85683 5.45983I
u = 0.958060 + 0.835699I
7.61845 6.71466I 0
u = 0.958060 0.835699I
7.61845 + 6.71466I 0
u = 0.957851 + 0.843793I
9.27928 + 1.74172I 0
u = 0.957851 0.843793I
9.27928 1.74172I 0
u = 0.971706 + 0.830064I
6.67568 9.48827I 0
u = 0.971706 0.830064I
6.67568 + 9.48827I 0
u = 0.349192 + 0.628699I
6.51842 + 1.01634I 11.98104 0.35855I
u = 0.349192 0.628699I
6.51842 1.01634I 11.98104 + 0.35855I
u = 0.968360 + 0.838404I
12.7333 + 8.4874I 0
u = 0.968360 0.838404I
12.7333 8.4874I 0
u = 0.975008 + 0.831934I
8.0235 + 15.0692I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.975008 0.831934I
8.0235 15.0692I 0
u = 0.404670 + 0.575073I
1.350410 + 0.201542I 5.94284 0.35775I
u = 0.404670 0.575073I
1.350410 0.201542I 5.94284 + 0.35775I
u = 0.294052 + 0.637960I
2.17798 + 7.35569I 7.13193 5.37841I
u = 0.294052 0.637960I
2.17798 7.35569I 7.13193 + 5.37841I
u = 0.291469 + 0.612077I
0.90037 1.95033I 5.15826 + 0.68407I
u = 0.291469 0.612077I
0.90037 + 1.95033I 5.15826 0.68407I
u = 0.377205 + 0.366640I
1.057850 0.229849I 9.46177 + 0.74997I
u = 0.377205 0.366640I
1.057850 + 0.229849I 9.46177 0.74997I
u = 0.030464 + 0.507917I
2.51540 2.64232I 2.22204 + 3.38040I
u = 0.030464 0.507917I
2.51540 + 2.64232I 2.22204 3.38040I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
71
+ 25u
70
+ ··· + 4u + 1
c
2
, c
6
u
71
u
70
+ ··· 2u + 1
c
3
, c
5
u
71
+ u
70
+ ··· 406u + 97
c
4
, c
10
u
71
+ u
70
+ ··· + 2u + 1
c
8
, c
9
, c
11
u
71
17u
70
+ ··· + 4u 1
c
12
u
71
7u
70
+ ··· + 13008u 6545
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
71
+ 43y
70
+ ··· 20y 1
c
2
, c
6
y
71
25y
70
+ ··· + 4y 1
c
3
, c
5
y
71
53y
70
+ ··· + 348748y 9409
c
4
, c
10
y
71
17y
70
+ ··· + 4y 1
c
8
, c
9
, c
11
y
71
+ 75y
70
+ ··· 20y 1
c
12
y
71
25y
70
+ ··· + 292384964y 42837025
9