12a
0548
(K12a
0548
)
A knot diagram
1
Linearized knot diagam
3 7 8 11 10 2 6 12 1 5 4 9
Solving Sequence
2,6
7 3 8 4
1,10
5 11 9 12
c
6
c
2
c
7
c
3
c
1
c
5
c
10
c
9
c
12
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.58134 × 10
20
u
62
+ 3.74205 × 10
20
u
61
+ ··· + 2.91973 × 10
21
b 2.96150 × 10
21
,
1.26309 × 10
22
u
62
+ 1.69902 × 10
22
u
61
+ ··· + 8.75918 × 10
21
a 5.81824 × 10
22
, u
63
2u
62
+ ··· + 5u 3i
I
u
2
= h−u
2
a au u
2
+ b u 1, a
2
+ 2au + 3u
2
+ 2a + 2u + 1, u
3
+ u
2
1i
I
u
3
= hb, a u + 1, u
3
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.58×10
20
u
62
+3.74×10
20
u
61
+· · ·+2.92×10
21
b2.96×10
21
, 1.26×
10
22
u
62
+1.70×10
22
u
61
+· · ·+8.76×10
21
a5.82×10
22
, u
63
2u
62
+· · ·+5u3i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
10
=
1.44202u
62
1.93971u
61
+ ··· + 0.661158u + 6.64244
0.0541605u
62
0.128165u
61
+ ··· 0.441955u + 1.01431
a
5
=
0.185702u
62
+ 0.0752726u
61
+ ··· 2.14838u + 0.547461
0.719076u
62
0.662451u
61
+ ··· 0.943387u + 1.09817
a
11
=
0.903442u
62
1.53591u
61
+ ··· + 1.76710u + 4.49679
0.804672u
62
+ 1.13906u
61
+ ··· + 1.28977u 3.03093
a
9
=
1.18523u
62
1.75085u
61
+ ··· + 1.47609u + 5.39500
0.563042u
62
+ 0.514494u
61
+ ··· + 0.795969u 0.856839
a
12
=
0.905223u
62
1.45026u
61
+ ··· + 0.887446u + 4.18778
0.569552u
62
+ 0.745346u
61
+ ··· + 1.44587u 2.47512
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7126225419678175524155
1459863554716009717429
u
62
8012124561236711506684
1459863554716009717429
u
61
+ ···
14448360873832908916690
1459863554716009717429
u +
13917590278743478982007
1459863554716009717429
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
63
+ 22u
62
+ ··· + 79u + 9
c
2
, c
6
u
63
2u
62
+ ··· + 5u 3
c
3
u
63
+ 2u
62
+ ··· 2119u 507
c
4
, c
5
, c
10
c
11
u
63
u
62
+ ··· 32u 8
c
8
, c
9
, c
12
u
63
+ 4u
62
+ ··· + 12u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
63
+ 42y
62
+ ··· 4037y 81
c
2
, c
6
y
63
22y
62
+ ··· + 79y 9
c
3
y
63
30y
62
+ ··· + 10968607y 257049
c
4
, c
5
, c
10
c
11
y
63
+ 77y
62
+ ··· 384y 64
c
8
, c
9
, c
12
y
63
64y
62
+ ··· 154y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.610001 + 0.784154I
a = 0.583306 0.639284I
b = 0.10442 + 1.60088I
6.01435 + 3.73785I 6.21764 2.33056I
u = 0.610001 0.784154I
a = 0.583306 + 0.639284I
b = 0.10442 1.60088I
6.01435 3.73785I 6.21764 + 2.33056I
u = 0.691211 + 0.731938I
a = 0.984563 + 0.325099I
b = 0.423366 0.660007I
1.70446 1.85626I 3.28574 + 4.17386I
u = 0.691211 0.731938I
a = 0.984563 0.325099I
b = 0.423366 + 0.660007I
1.70446 + 1.85626I 3.28574 4.17386I
u = 0.984690 + 0.048731I
a = 0.390182 + 1.262910I
b = 0.214172 + 0.744109I
3.63603 1.98289I 12.79221 + 5.30533I
u = 0.984690 0.048731I
a = 0.390182 1.262910I
b = 0.214172 0.744109I
3.63603 + 1.98289I 12.79221 5.30533I
u = 0.617889 + 0.811854I
a = 1.21265 0.77110I
b = 0.569733 + 0.792616I
4.01161 5.24201I 7.19231 + 3.97955I
u = 0.617889 0.811854I
a = 1.21265 + 0.77110I
b = 0.569733 0.792616I
4.01161 + 5.24201I 7.19231 3.97955I
u = 0.800531 + 0.652431I
a = 0.356242 + 0.321397I
b = 0.225169 + 0.600163I
0.12008 + 2.15047I 8.15527 1.56284I
u = 0.800531 0.652431I
a = 0.356242 0.321397I
b = 0.225169 0.600163I
0.12008 2.15047I 8.15527 + 1.56284I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.809657 + 0.514097I
a = 2.00737 + 1.05562I
b = 0.143570 1.274290I
6.22882 + 2.00042I 11.28661 3.42546I
u = 0.809657 0.514097I
a = 2.00737 1.05562I
b = 0.143570 + 1.274290I
6.22882 2.00042I 11.28661 + 3.42546I
u = 0.785085 + 0.714910I
a = 1.190430 + 0.036937I
b = 0.504608 0.222274I
2.98803 1.39468I 0
u = 0.785085 0.714910I
a = 1.190430 0.036937I
b = 0.504608 + 0.222274I
2.98803 + 1.39468I 0
u = 0.600448 + 0.711632I
a = 1.70429 + 0.06119I
b = 0.710743 + 0.153011I
2.09343 + 0.92231I 4.75363 + 0.62378I
u = 0.600448 0.711632I
a = 1.70429 0.06119I
b = 0.710743 0.153011I
2.09343 0.92231I 4.75363 0.62378I
u = 0.625396 + 0.875190I
a = 0.658938 + 1.166250I
b = 0.16972 1.64610I
12.3245 + 8.0761I 0
u = 0.625396 0.875190I
a = 0.658938 1.166250I
b = 0.16972 + 1.64610I
12.3245 8.0761I 0
u = 1.07798
a = 0.363979
b = 0.794949
7.41534 11.6850
u = 1.095210 + 0.048926I
a = 0.55949 2.15472I
b = 0.04899 1.63658I
11.94220 + 2.91582I 13.41371 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.095210 0.048926I
a = 0.55949 + 2.15472I
b = 0.04899 + 1.63658I
11.94220 2.91582I 13.41371 + 0.I
u = 1.104710 + 0.076472I
a = 0.598094 0.752936I
b = 0.537709 0.922877I
10.23730 4.46631I 0
u = 1.104710 0.076472I
a = 0.598094 + 0.752936I
b = 0.537709 + 0.922877I
10.23730 + 4.46631I 0
u = 0.924553 + 0.652788I
a = 1.041360 + 0.503496I
b = 0.120631 + 0.731259I
0.27540 + 2.92512I 0
u = 0.924553 0.652788I
a = 1.041360 0.503496I
b = 0.120631 0.731259I
0.27540 2.92512I 0
u = 0.857291
a = 0.117983
b = 0.362513
1.52387 4.27340
u = 0.869676 + 0.750012I
a = 1.07018 1.26107I
b = 0.01356 + 1.42114I
1.90031 + 2.83940I 0
u = 0.869676 0.750012I
a = 1.07018 + 1.26107I
b = 0.01356 1.42114I
1.90031 2.83940I 0
u = 0.275496 + 0.805252I
a = 0.721010 1.151510I
b = 0.10473 + 1.66585I
14.3129 4.3810I 9.57041 + 2.65515I
u = 0.275496 0.805252I
a = 0.721010 + 1.151510I
b = 0.10473 1.66585I
14.3129 + 4.3810I 9.57041 2.65515I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.926875 + 0.695254I
a = 0.771343 + 0.660731I
b = 0.511668 0.144834I
2.55508 4.00808I 0
u = 0.926875 0.695254I
a = 0.771343 0.660731I
b = 0.511668 + 0.144834I
2.55508 + 4.00808I 0
u = 1.157940 + 0.127426I
a = 1.00083 + 1.33298I
b = 0.14561 + 1.68788I
19.2613 + 7.1339I 0
u = 1.157940 0.127426I
a = 1.00083 1.33298I
b = 0.14561 1.68788I
19.2613 7.1339I 0
u = 1.012450 + 0.583469I
a = 0.326595 + 0.686319I
b = 0.395006 1.064730I
7.17296 + 2.09708I 0
u = 1.012450 0.583469I
a = 0.326595 0.686319I
b = 0.395006 + 1.064730I
7.17296 2.09708I 0
u = 0.881182 + 0.793135I
a = 0.465108 1.062750I
b = 0.041752 + 0.558255I
0.64338 2.97205I 0
u = 0.881182 0.793135I
a = 0.465108 + 1.062750I
b = 0.041752 0.558255I
0.64338 + 2.97205I 0
u = 1.017390 + 0.618478I
a = 1.87775 0.74485I
b = 0.03214 1.62578I
8.45630 3.51087I 0
u = 1.017390 0.618478I
a = 1.87775 + 0.74485I
b = 0.03214 + 1.62578I
8.45630 + 3.51087I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.985609 + 0.683922I
a = 1.70144 0.50584I
b = 0.424758 0.732772I
0.82025 + 7.27682I 0
u = 0.985609 0.683922I
a = 1.70144 + 0.50584I
b = 0.424758 + 0.732772I
0.82025 7.27682I 0
u = 1.092490 + 0.516377I
a = 1.131500 + 0.316734I
b = 0.08034 + 1.69877I
16.8215 0.3894I 0
u = 1.092490 0.516377I
a = 1.131500 0.316734I
b = 0.08034 1.69877I
16.8215 + 0.3894I 0
u = 1.018900 + 0.657892I
a = 1.055480 0.878323I
b = 0.792174 + 0.156872I
3.31368 6.20587I 0
u = 1.018900 0.657892I
a = 1.055480 + 0.878323I
b = 0.792174 0.156872I
3.31368 + 6.20587I 0
u = 0.683095 + 0.384601I
a = 0.398095 0.889020I
b = 0.04461 1.50376I
6.96067 1.23913I 9.15719 + 5.40608I
u = 0.683095 0.384601I
a = 0.398095 + 0.889020I
b = 0.04461 + 1.50376I
6.96067 + 1.23913I 9.15719 5.40608I
u = 0.464167 + 0.618799I
a = 0.455453 + 0.164648I
b = 0.00190 1.57015I
7.04509 1.37731I 7.22554 + 3.34935I
u = 0.464167 0.618799I
a = 0.455453 0.164648I
b = 0.00190 + 1.57015I
7.04509 + 1.37731I 7.22554 3.34935I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.899452 + 0.851726I
a = 0.97396 + 1.50330I
b = 0.01020 1.60392I
6.99761 + 3.15141I 0
u = 0.899452 0.851726I
a = 0.97396 1.50330I
b = 0.01020 + 1.60392I
6.99761 3.15141I 0
u = 1.035350 + 0.682439I
a = 2.42596 + 0.27809I
b = 0.11553 + 1.62619I
7.28355 9.28433I 0
u = 1.035350 0.682439I
a = 2.42596 0.27809I
b = 0.11553 1.62619I
7.28355 + 9.28433I 0
u = 0.350286 + 0.666278I
a = 1.17109 + 0.95740I
b = 0.371640 0.892558I
5.46380 + 2.51444I 8.36255 3.99940I
u = 0.350286 0.666278I
a = 1.17109 0.95740I
b = 0.371640 + 0.892558I
5.46380 2.51444I 8.36255 + 3.99940I
u = 1.041560 + 0.694554I
a = 1.90739 + 0.36362I
b = 0.617502 + 0.812473I
5.28758 + 10.90360I 0
u = 1.041560 0.694554I
a = 1.90739 0.36362I
b = 0.617502 0.812473I
5.28758 10.90360I 0
u = 1.063920 + 0.720846I
a = 2.43149 + 0.20835I
b = 0.18673 1.65389I
13.6698 14.0027I 0
u = 1.063920 0.720846I
a = 2.43149 0.20835I
b = 0.18673 + 1.65389I
13.6698 + 14.0027I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514170
a = 2.57325
b = 0.355506
2.33892 2.37070
u = 0.202617 + 0.344744I
a = 0.979704 0.005239I
b = 0.216636 + 0.455539I
0.134368 + 0.901804I 2.96446 7.62176I
u = 0.202617 0.344744I
a = 0.979704 + 0.005239I
b = 0.216636 0.455539I
0.134368 0.901804I 2.96446 + 7.62176I
11
II.
I
u
2
= h−u
2
a au u
2
+ b u 1, a
2
+ 2au + 3u
2
+ 2a + 2u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
2
+ u 1
a
8
=
u
2
+ 1
u
2
a
4
=
1
0
a
1
=
u
2
+ 1
u
2
a
10
=
a
u
2
a + au + u
2
+ u + 1
a
5
=
u
2
a au u
2
a 4u 1
2
a
11
=
u
2
a + au + u
2
a + u + 1
u
2
a au u
2
u 1
a
9
=
u
2
+ a + 1
u
2
a + au + 2u
2
+ u + 1
a
12
=
a
u
2
a au u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
u
2
+ 1)
2
c
3
, c
7
(u
3
+ u
2
+ 2u + 1)
2
c
4
, c
5
, c
10
c
11
(u
2
+ 2)
3
c
6
(u
3
+ u
2
1)
2
c
8
, c
9
(u + 1)
6
c
12
(u 1)
6
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
6
(y
3
y
2
+ 2y 1)
2
c
4
, c
5
, c
10
c
11
(y + 2)
6
c
8
, c
9
, c
12
(y 1)
6
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.930832 + 0.496024I
b = 1.414210I
3.55561 + 2.82812I 8.49024 2.97945I
u = 0.877439 + 0.744862I
a = 1.17595 1.98575I
b = 1.414210I
3.55561 + 2.82812I 8.49024 2.97945I
u = 0.877439 0.744862I
a = 0.930832 0.496024I
b = 1.414210I
3.55561 2.82812I 8.49024 + 2.97945I
u = 0.877439 0.744862I
a = 1.17595 + 1.98575I
b = 1.414210I
3.55561 2.82812I 8.49024 + 2.97945I
u = 0.754878
a = 1.75488 + 1.06756I
b = 1.414210I
7.69319 15.0200
u = 0.754878
a = 1.75488 1.06756I
b = 1.414210I
7.69319 15.0200
15
III. I
u
3
= hb, a u + 1, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
8
=
u
2
+ 1
u
2
a
4
=
1
0
a
1
=
u
2
1
u
2
a
10
=
u 1
0
a
5
=
1
0
a
11
=
u 1
0
a
9
=
u
2
+ u
u
2
a
12
=
u 1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 10u 8
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
, c
5
, c
10
c
11
u
3
c
6
u
3
u
2
+ 1
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
9
(u 1)
3
c
12
(u + 1)
3
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
6
y
3
y
2
+ 2y 1
c
4
, c
5
, c
10
c
11
y
3
c
8
, c
9
, c
12
(y 1)
3
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.122561 + 0.744862I
b = 0
1.37919 2.82812I 0.08593 + 2.22005I
u = 0.877439 0.744862I
a = 0.122561 0.744862I
b = 0
1.37919 + 2.82812I 0.08593 2.22005I
u = 0.754878
a = 1.75488
b = 0
2.75839 17.8280
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
3
)(u
63
+ 22u
62
+ ··· + 79u + 9)
c
2
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
63
2u
62
+ ··· + 5u 3)
c
3
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
63
+ 2u
62
+ ··· 2119u 507)
c
4
, c
5
, c
10
c
11
u
3
(u
2
+ 2)
3
(u
63
u
62
+ ··· 32u 8)
c
6
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
63
2u
62
+ ··· + 5u 3)
c
7
((u
3
+ u
2
+ 2u + 1)
3
)(u
63
+ 22u
62
+ ··· + 79u + 9)
c
8
, c
9
((u 1)
3
)(u + 1)
6
(u
63
+ 4u
62
+ ··· + 12u 1)
c
12
((u 1)
6
)(u + 1)
3
(u
63
+ 4u
62
+ ··· + 12u 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
((y
3
+ 3y
2
+ 2y 1)
3
)(y
63
+ 42y
62
+ ··· 4037y 81)
c
2
, c
6
((y
3
y
2
+ 2y 1)
3
)(y
63
22y
62
+ ··· + 79y 9)
c
3
((y
3
+ 3y
2
+ 2y 1)
3
)(y
63
30y
62
+ ··· + 1.09686 × 10
7
y 257049)
c
4
, c
5
, c
10
c
11
y
3
(y + 2)
6
(y
63
+ 77y
62
+ ··· 384y 64)
c
8
, c
9
, c
12
((y 1)
9
)(y
63
64y
62
+ ··· 154y 1)
21