12a
0550
(K12a
0550
)
A knot diagram
1
Linearized knot diagam
3 7 8 11 10 2 1 6 12 5 4 9
Solving Sequence
4,11
5 12 10 6 9 1 8 3 2 7
c
4
c
11
c
10
c
5
c
9
c
12
c
8
c
3
c
1
c
7
c
2
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
74
+ u
73
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
74
+ u
73
+ · · · + u + 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
u
5
+ 2u
3
u
u
5
+ 3u
3
+ u
a
1
=
u
9
+ 4u
7
+ 3u
5
2u
3
+ u
u
9
+ 5u
7
+ 7u
5
+ 2u
3
+ u
a
8
=
u
11
6u
9
12u
7
8u
5
u
3
2u
u
13
+ 7u
11
+ 17u
9
+ 16u
7
+ 6u
5
+ 5u
3
+ u
a
3
=
u
24
13u
22
+ ··· 2u
2
+ 1
u
26
+ 14u
24
+ ··· + 10u
4
+ u
2
a
2
=
u
59
32u
57
+ ··· + 28u
5
+ u
3
u
61
+ 33u
59
+ ··· + u
3
+ u
a
7
=
u
31
16u
29
+ ··· 4u
3
2u
u
31
17u
29
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
73
+ 4u
72
+ ··· + 4u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
74
+ 35u
73
+ ··· u + 1
c
2
, c
6
u
74
u
73
+ ··· u + 1
c
3
u
74
+ u
73
+ ··· 879u + 481
c
4
, c
5
, c
10
c
11
u
74
u
73
+ ··· u + 1
c
7
u
74
3u
73
+ ··· 325u + 175
c
8
u
74
+ 9u
73
+ ··· + 169u + 13
c
9
, c
12
u
74
13u
73
+ ··· 2717u + 283
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
74
+ 9y
73
+ ··· + 5y + 1
c
2
, c
6
y
74
35y
73
+ ··· + y + 1
c
3
y
74
19y
73
+ ··· 9331555y + 231361
c
4
, c
5
, c
10
c
11
y
74
+ 81y
73
+ ··· + y + 1
c
7
y
74
+ 17y
73
+ ··· + 1185525y + 30625
c
8
y
74
+ 5y
73
+ ··· + 4433y + 169
c
9
, c
12
y
74
+ 45y
73
+ ··· + 403241y + 80089
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.581679 + 0.588687I
1.14751 12.21490I 2.00000 + 10.62461I
u = 0.581679 0.588687I
1.14751 + 12.21490I 2.00000 10.62461I
u = 0.579078 + 0.579968I
3.39034 + 7.17138I 4.72098 6.80374I
u = 0.579078 0.579968I
3.39034 7.17138I 4.72098 + 6.80374I
u = 0.558960 + 0.584212I
1.22103 4.59999I 1.85198 + 5.42057I
u = 0.558960 0.584212I
1.22103 + 4.59999I 1.85198 5.42057I
u = 0.580042 + 0.552186I
4.60737 + 4.92092I 6.44482 6.98206I
u = 0.580042 0.552186I
4.60737 4.92092I 6.44482 + 6.98206I
u = 0.581910 + 0.533281I
3.51551 0.09713I 4.79421 + 0.95551I
u = 0.581910 0.533281I
3.51551 + 0.09713I 4.79421 0.95551I
u = 0.160664 + 0.764547I
3.59023 + 7.24183I 4.81965 8.01497I
u = 0.160664 0.764547I
3.59023 7.24183I 4.81965 + 8.01497I
u = 0.081400 + 0.760927I
5.25802 0.19086I 8.37896 0.60569I
u = 0.081400 0.760927I
5.25802 + 0.19086I 8.37896 + 0.60569I
u = 0.475714 + 0.583485I
2.85675 + 4.95140I 3.45849 7.85168I
u = 0.475714 0.583485I
2.85675 4.95140I 3.45849 + 7.85168I
u = 0.594230 + 0.443922I
3.77889 3.92096I 5.61393 + 5.93891I
u = 0.594230 0.443922I
3.77889 + 3.92096I 5.61393 5.93891I
u = 0.149812 + 0.724787I
1.30291 2.53624I 1.75249 + 4.49036I
u = 0.149812 0.724787I
1.30291 + 2.53624I 1.75249 4.49036I
u = 0.595573 + 0.422112I
4.98992 0.90435I 7.85161 + 0.13371I
u = 0.595573 0.422112I
4.98992 + 0.90435I 7.85161 0.13371I
u = 0.611496 + 0.376425I
1.77025 + 8.14990I 3.28357 4.51693I
u = 0.611496 0.376425I
1.77025 8.14990I 3.28357 + 4.51693I
u = 0.603907 + 0.386844I
3.95690 3.13486I 6.57615 + 0.47238I
u = 0.603907 0.386844I
3.95690 + 3.13486I 6.57615 0.47238I
u = 0.384733 + 0.589181I
2.15217 2.34776I 2.61549 0.50712I
u = 0.384733 0.589181I
2.15217 + 2.34776I 2.61549 + 0.50712I
u = 0.457206 + 0.515716I
0.32851 1.59321I 1.85928 + 4.31200I
u = 0.457206 0.515716I
0.32851 + 1.59321I 1.85928 4.31200I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.576050 + 0.370037I
0.597920 + 0.702387I 0.117490 + 1.017971I
u = 0.576050 0.370037I
0.597920 0.702387I 0.117490 1.017971I
u = 0.191536 + 0.572330I
0.30101 1.44762I 0.21354 + 6.41359I
u = 0.191536 0.572330I
0.30101 + 1.44762I 0.21354 6.41359I
u = 0.13095 + 1.44541I
4.02653 + 5.58703I 0
u = 0.13095 1.44541I
4.02653 5.58703I 0
u = 0.13429 + 1.45675I
1.94463 0.59547I 0
u = 0.13429 1.45675I
1.94463 + 0.59547I 0
u = 0.10830 + 1.47365I
6.49129 1.54826I 0
u = 0.10830 1.47365I
6.49129 + 1.54826I 0
u = 0.14890 + 1.47840I
1.17433 + 1.68063I 0
u = 0.14890 1.47840I
1.17433 1.68063I 0
u = 0.442216 + 0.250522I
2.00759 1.71991I 0.002985 + 0.493302I
u = 0.442216 0.250522I
2.00759 + 1.71991I 0.002985 0.493302I
u = 0.15679 + 1.48846I
2.52069 6.55186I 0
u = 0.15679 1.48846I
2.52069 + 6.55186I 0
u = 0.465321 + 0.114222I
0.77170 + 5.14412I 3.35203 6.10091I
u = 0.465321 0.114222I
0.77170 5.14412I 3.35203 + 6.10091I
u = 0.16980 + 1.53508I
3.33883 2.79785I 0
u = 0.16980 1.53508I
3.33883 + 2.79785I 0
u = 0.02101 + 1.54796I
7.42999 2.03723I 0
u = 0.02101 1.54796I
7.42999 + 2.03723I 0
u = 0.13143 + 1.54609I
6.62453 3.70192I 0
u = 0.13143 1.54609I
6.62453 + 3.70192I 0
u = 0.17209 + 1.54345I
2.35401 + 7.64003I 0
u = 0.17209 1.54345I
2.35401 7.64003I 0
u = 0.11928 + 1.55708I
9.35786 0.47227I 0
u = 0.11928 1.55708I
9.35786 + 0.47227I 0
u = 0.17433 + 1.55520I
3.72276 + 9.91652I 0
u = 0.17433 1.55520I
3.72276 9.91652I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13939 + 1.55951I
10.05520 + 7.19221I 0
u = 0.13939 1.55951I
10.05520 7.19221I 0
u = 0.16695 + 1.55795I
8.37394 7.24510I 0
u = 0.16695 1.55795I
8.37394 + 7.24510I 0
u = 0.17594 + 1.55858I
6.0096 14.9821I 0
u = 0.17594 1.55858I
6.0096 + 14.9821I 0
u = 0.412346 + 0.073322I
1.227240 0.638691I 7.97254 + 1.54143I
u = 0.412346 0.073322I
1.227240 + 0.638691I 7.97254 1.54143I
u = 0.02854 + 1.58475I
9.12688 3.11271I 0
u = 0.02854 1.58475I
9.12688 + 3.11271I 0
u = 0.01619 + 1.59177I
13.22470 + 0.12897I 0
u = 0.01619 1.59177I
13.22470 0.12897I 0
u = 0.03179 + 1.59277I
11.57340 + 7.87379I 0
u = 0.03179 1.59277I
11.57340 7.87379I 0
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
74
+ 35u
73
+ ··· u + 1
c
2
, c
6
u
74
u
73
+ ··· u + 1
c
3
u
74
+ u
73
+ ··· 879u + 481
c
4
, c
5
, c
10
c
11
u
74
u
73
+ ··· u + 1
c
7
u
74
3u
73
+ ··· 325u + 175
c
8
u
74
+ 9u
73
+ ··· + 169u + 13
c
9
, c
12
u
74
13u
73
+ ··· 2717u + 283
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
74
+ 9y
73
+ ··· + 5y + 1
c
2
, c
6
y
74
35y
73
+ ··· + y + 1
c
3
y
74
19y
73
+ ··· 9331555y + 231361
c
4
, c
5
, c
10
c
11
y
74
+ 81y
73
+ ··· + y + 1
c
7
y
74
+ 17y
73
+ ··· + 1185525y + 30625
c
8
y
74
+ 5y
73
+ ··· + 4433y + 169
c
9
, c
12
y
74
+ 45y
73
+ ··· + 403241y + 80089
9