12a
0556
(K12a
0556
)
A knot diagram
1
Linearized knot diagam
3 7 9 8 11 2 6 4 12 1 5 10
Solving Sequence
2,6
7 3 8
1,11
5 4 9 10 12
c
6
c
2
c
7
c
1
c
5
c
4
c
8
c
10
c
12
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.07057 × 10
77
u
84
1.50389 × 10
77
u
83
+ ··· + 2.53839 × 10
77
b + 9.88146 × 10
77
,
4.68186 × 10
77
u
84
4.98399 × 10
77
u
83
+ ··· + 7.61518 × 10
77
a + 1.56488 × 10
78
, u
85
2u
84
+ ··· + 3u 9i
I
u
2
= hb, u
4
u
2
+ a 2u + 1, u
5
+ u
4
u
2
+ u + 1i
I
u
3
= h−u
3
a u
2
a + 2u
3
+ au u
2
+ 2b u + 1, 2u
3
a + u
2
a + 3u
3
+ a
2
+ au u
2
a 2u, u
4
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.07 × 10
77
u
84
1.50 × 10
77
u
83
+ · · · + 2.54 × 10
77
b + 9.88 × 10
77
, 4.68 ×
10
77
u
84
4.98×10
77
u
83
+· · ·+7.62×10
77
a+1.56×10
78
, u
85
2u
84
+· · ·+3u9i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
1
=
u
3
u
5
u
3
+ u
a
11
=
0.614806u
84
+ 0.654481u
83
+ ··· + 9.36540u 2.05495
0.421753u
84
+ 0.592456u
83
+ ··· 1.27756u 3.89280
a
5
=
0.681235u
84
0.376546u
83
+ ··· 7.23243u + 7.03410
0.191650u
84
0.675652u
83
+ ··· + 8.48193u + 7.43904
a
4
=
1.86822u
84
0.943208u
83
+ ··· 12.5547u + 7.89357
0.0907235u
84
1.88072u
83
+ ··· + 17.6608u + 14.6758
a
9
=
1.63065u
84
3.35202u
83
+ ··· + 13.0436u + 22.5528
2.79323u
84
+ 3.46800u
83
+ ··· 2.28892u 16.8140
a
10
=
0.699998u
84
1.53125u
83
+ ··· + 14.4778u + 10.2525
1.30758u
84
+ 1.53849u
83
+ ··· 1.30083u 10.6368
a
12
=
1.80393u
84
+ 3.41357u
83
+ ··· 3.48625u 22.2978
3.09725u
84
3.65415u
83
+ ··· + 0.275477u + 18.2000
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.269673u
84
0.693788u
83
+ ··· + 4.57663u 2.13190
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
85
+ 28u
84
+ ··· + 1107u + 81
c
2
, c
6
u
85
2u
84
+ ··· + 3u 9
c
3
, c
4
, c
8
u
85
2u
84
+ ··· + 144u 36
c
5
, c
11
u
85
+ u
84
+ ··· 96u 32
c
9
, c
10
, c
12
u
85
10u
84
+ ··· + 17u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
85
+ 64y
84
+ ··· + 485595y 6561
c
2
, c
6
y
85
28y
84
+ ··· + 1107y 81
c
3
, c
4
, c
8
y
85
+ 80y
84
+ ··· + 16776y 1296
c
5
, c
11
y
85
+ 45y
84
+ ··· + 22016y 1024
c
9
, c
10
, c
12
y
85
80y
84
+ ··· 91y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.998621
a = 0.294335
b = 1.06804
5.84228 16.3890
u = 0.806816 + 0.599615I
a = 0.703510 + 0.591628I
b = 0.319657 + 0.693146I
0.43718 + 2.02855I 0
u = 0.806816 0.599615I
a = 0.703510 0.591628I
b = 0.319657 0.693146I
0.43718 2.02855I 0
u = 0.984839 + 0.081448I
a = 0.48248 + 1.60444I
b = 0.198977 + 1.034500I
3.82226 2.23236I 15.8479 + 4.6950I
u = 0.984839 0.081448I
a = 0.48248 1.60444I
b = 0.198977 1.034500I
3.82226 + 2.23236I 15.8479 4.6950I
u = 1.016480 + 0.146739I
a = 0.131558 0.758826I
b = 1.033670 0.298635I
2.02964 3.37819I 0
u = 1.016480 0.146739I
a = 0.131558 + 0.758826I
b = 1.033670 + 0.298635I
2.02964 + 3.37819I 0
u = 0.709986 + 0.663321I
a = 2.20996 + 0.27167I
b = 0.850401 + 0.427141I
1.108310 + 0.109986I 8.00000 + 0.I
u = 0.709986 0.663321I
a = 2.20996 0.27167I
b = 0.850401 0.427141I
1.108310 0.109986I 8.00000 + 0.I
u = 0.900145 + 0.529083I
a = 5.92919 1.06315I
b = 0.309938 + 0.046527I
0.08293 + 2.04372I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.900145 0.529083I
a = 5.92919 + 1.06315I
b = 0.309938 0.046527I
0.08293 2.04372I 0
u = 0.724002 + 0.754097I
a = 0.922405 + 0.673843I
b = 0.555009 0.921380I
1.77796 1.79805I 0
u = 0.724002 0.754097I
a = 0.922405 0.673843I
b = 0.555009 + 0.921380I
1.77796 + 1.79805I 0
u = 0.775319 + 0.522980I
a = 0.458774 + 0.800072I
b = 0.235131 0.116553I
1.78078 2.10361I 0. + 4.46892I
u = 0.775319 0.522980I
a = 0.458774 0.800072I
b = 0.235131 + 0.116553I
1.78078 + 2.10361I 0. 4.46892I
u = 0.268293 + 0.888731I
a = 0.732829 + 0.719131I
b = 0.581673 1.021050I
0.28979 6.12813I 7.02703 + 5.51860I
u = 0.268293 0.888731I
a = 0.732829 0.719131I
b = 0.581673 + 1.021050I
0.28979 + 6.12813I 7.02703 5.51860I
u = 0.711753 + 0.806285I
a = 1.84218 + 0.24993I
b = 1.26596 + 0.66556I
4.32861 2.99556I 0
u = 0.711753 0.806285I
a = 1.84218 0.24993I
b = 1.26596 0.66556I
4.32861 + 2.99556I 0
u = 0.867038 + 0.661822I
a = 1.308520 + 0.434436I
b = 0.06260 1.87617I
5.78886 2.56710I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.867038 0.661822I
a = 1.308520 0.434436I
b = 0.06260 + 1.87617I
5.78886 + 2.56710I 0
u = 0.759915 + 0.787119I
a = 0.139375 0.369733I
b = 0.543133 + 1.290540I
5.21127 0.29207I 0
u = 0.759915 0.787119I
a = 0.139375 + 0.369733I
b = 0.543133 1.290540I
5.21127 + 0.29207I 0
u = 0.674977 + 0.862853I
a = 0.848112 1.114180I
b = 0.606952 + 1.131660I
3.29308 5.51174I 0
u = 0.674977 0.862853I
a = 0.848112 + 1.114180I
b = 0.606952 1.131660I
3.29308 + 5.51174I 0
u = 0.996557 + 0.465595I
a = 1.127330 + 0.051322I
b = 0.09960 1.43805I
8.63067 + 1.50287I 0
u = 0.996557 0.465595I
a = 1.127330 0.051322I
b = 0.09960 + 1.43805I
8.63067 1.50287I 0
u = 0.693699 + 0.854594I
a = 0.694895 + 0.626975I
b = 0.729780 1.197990I
7.72360 + 5.45340I 0
u = 0.693699 0.854594I
a = 0.694895 0.626975I
b = 0.729780 + 1.197990I
7.72360 5.45340I 0
u = 0.873454 + 0.207048I
a = 1.70854 0.67125I
b = 0.20097 1.51805I
8.29116 + 1.11793I 14.9646 + 1.4167I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.873454 0.207048I
a = 1.70854 + 0.67125I
b = 0.20097 + 1.51805I
8.29116 1.11793I 14.9646 1.4167I
u = 0.631492 + 0.905031I
a = 0.944080 0.902830I
b = 0.83894 + 1.21192I
2.45406 + 10.41200I 0
u = 0.631492 0.905031I
a = 0.944080 + 0.902830I
b = 0.83894 1.21192I
2.45406 10.41200I 0
u = 0.886138 + 0.123069I
a = 0.92190 1.99206I
b = 0.053379 0.976140I
0.667588 + 1.025160I 12.54308 0.08033I
u = 0.886138 0.123069I
a = 0.92190 + 1.99206I
b = 0.053379 + 0.976140I
0.667588 1.025160I 12.54308 + 0.08033I
u = 0.850775 + 0.712293I
a = 0.798573 + 0.967990I
b = 0.612070 0.514601I
2.60791 2.73509I 0
u = 0.850775 0.712293I
a = 0.798573 0.967990I
b = 0.612070 + 0.514601I
2.60791 + 2.73509I 0
u = 1.093410 + 0.191489I
a = 0.21969 + 1.48130I
b = 0.482351 + 1.025410I
0.65643 + 5.42394I 0
u = 1.093410 0.191489I
a = 0.21969 1.48130I
b = 0.482351 1.025410I
0.65643 5.42394I 0
u = 0.922652 + 0.626826I
a = 1.48767 + 0.81968I
b = 0.235613 + 0.929059I
0.82236 + 2.80542I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.922652 0.626826I
a = 1.48767 0.81968I
b = 0.235613 0.929059I
0.82236 2.80542I 0
u = 1.105020 + 0.170837I
a = 0.762252 0.928102I
b = 0.412640 1.334080I
10.32480 5.23736I 0
u = 1.105020 0.170837I
a = 0.762252 + 0.928102I
b = 0.412640 + 1.334080I
10.32480 + 5.23736I 0
u = 1.034710 + 0.424655I
a = 0.678821 + 0.419020I
b = 0.453832 + 0.596946I
2.03787 1.45102I 0
u = 1.034710 0.424655I
a = 0.678821 0.419020I
b = 0.453832 0.596946I
2.03787 + 1.45102I 0
u = 0.887489 + 0.698307I
a = 1.81058 + 0.09319I
b = 0.549211 0.690031I
2.49176 2.67187I 0
u = 0.887489 0.698307I
a = 1.81058 0.09319I
b = 0.549211 + 0.690031I
2.49176 + 2.67187I 0
u = 0.759240 + 0.855036I
a = 0.365619 1.259310I
b = 0.353657 + 0.964749I
1.327970 0.401840I 0
u = 0.759240 0.855036I
a = 0.365619 + 1.259310I
b = 0.353657 0.964749I
1.327970 + 0.401840I 0
u = 0.967500 + 0.663999I
a = 1.16043 1.12609I
b = 1.042120 + 0.405267I
1.88422 5.29403I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.967500 0.663999I
a = 1.16043 + 1.12609I
b = 1.042120 0.405267I
1.88422 + 5.29403I 0
u = 0.826690 + 0.842297I
a = 1.264590 0.276686I
b = 1.032940 0.397310I
10.14220 + 0.91099I 0
u = 0.826690 0.842297I
a = 1.264590 + 0.276686I
b = 1.032940 + 0.397310I
10.14220 0.91099I 0
u = 0.979456 + 0.706863I
a = 1.99453 0.39746I
b = 0.548510 1.048100I
1.00480 + 7.36064I 0
u = 0.979456 0.706863I
a = 1.99453 + 0.39746I
b = 0.548510 + 1.048100I
1.00480 7.36064I 0
u = 1.200290 + 0.153170I
a = 0.338551 0.939110I
b = 0.631973 1.218280I
4.88195 + 9.31216I 0
u = 1.200290 0.153170I
a = 0.338551 + 0.939110I
b = 0.631973 + 1.218280I
4.88195 9.31216I 0
u = 0.967716 + 0.732266I
a = 1.56362 + 0.49238I
b = 0.42587 + 1.36774I
4.57399 5.44218I 0
u = 0.967716 0.732266I
a = 1.56362 0.49238I
b = 0.42587 1.36774I
4.57399 + 5.44218I 0
u = 1.000590 + 0.727268I
a = 0.73771 1.21462I
b = 1.35820 + 0.57857I
3.44867 + 8.76620I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.000590 0.727268I
a = 0.73771 + 1.21462I
b = 1.35820 0.57857I
3.44867 8.76620I 0
u = 0.946573 + 0.803204I
a = 0.739615 + 0.818673I
b = 1.022410 0.261567I
9.77457 + 5.21014I 0
u = 0.946573 0.803204I
a = 0.739615 0.818673I
b = 1.022410 + 0.261567I
9.77457 5.21014I 0
u = 0.995841 + 0.763155I
a = 1.69209 0.43161I
b = 0.479759 + 1.044820I
2.07273 5.62883I 0
u = 0.995841 0.763155I
a = 1.69209 + 0.43161I
b = 0.479759 1.044820I
2.07273 + 5.62883I 0
u = 0.147072 + 0.728915I
a = 0.683793 0.110743I
b = 0.656032 + 0.815272I
4.76220 2.53471I 1.46695 + 3.47281I
u = 0.147072 0.728915I
a = 0.683793 + 0.110743I
b = 0.656032 0.815272I
4.76220 + 2.53471I 1.46695 3.47281I
u = 0.150086 + 0.725683I
a = 0.54471 + 1.31256I
b = 0.202918 1.187480I
6.11100 + 2.42065I 11.51467 3.42821I
u = 0.150086 0.725683I
a = 0.54471 1.31256I
b = 0.202918 + 1.187480I
6.11100 2.42065I 11.51467 + 3.42821I
u = 1.027010 + 0.742791I
a = 1.86187 0.57547I
b = 0.67693 1.27703I
6.70036 11.40770I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.027010 0.742791I
a = 1.86187 + 0.57547I
b = 0.67693 + 1.27703I
6.70036 + 11.40770I 0
u = 0.730565
a = 0.0171409
b = 0.401918
1.07739 9.03050
u = 1.038750 + 0.736760I
a = 2.04598 + 0.10778I
b = 0.672589 + 1.206980I
4.41235 + 11.46610I 0
u = 1.038750 0.736760I
a = 2.04598 0.10778I
b = 0.672589 1.206980I
4.41235 11.46610I 0
u = 1.166100 + 0.516708I
a = 0.690535 + 0.225074I
b = 0.402473 1.048200I
2.57120 + 1.00877I 0
u = 1.166100 0.516708I
a = 0.690535 0.225074I
b = 0.402473 + 1.048200I
2.57120 1.00877I 0
u = 1.073740 + 0.736661I
a = 2.00421 + 0.50463I
b = 0.84789 + 1.28835I
1.0897 16.4761I 0
u = 1.073740 0.736661I
a = 2.00421 0.50463I
b = 0.84789 1.28835I
1.0897 + 16.4761I 0
u = 0.942740 + 0.934437I
a = 0.350351 0.512078I
b = 0.061691 + 0.565881I
8.96196 + 3.42091I 0
u = 0.942740 0.934437I
a = 0.350351 + 0.512078I
b = 0.061691 0.565881I
8.96196 3.42091I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.111200 + 0.545459I
a = 1.08297 1.20293I
b = 0.699790 0.645759I
1.50806 + 1.20124I 5.48394 0.07233I
u = 0.111200 0.545459I
a = 1.08297 + 1.20293I
b = 0.699790 + 0.645759I
1.50806 1.20124I 5.48394 + 0.07233I
u = 0.193935 + 0.335714I
a = 1.051420 0.253121I
b = 0.180316 + 0.662567I
0.404941 + 0.957173I 6.94345 7.00511I
u = 0.193935 0.335714I
a = 1.051420 + 0.253121I
b = 0.180316 0.662567I
0.404941 0.957173I 6.94345 + 7.00511I
u = 0.311045
a = 3.80168
b = 0.461365
2.06404 1.31720
13
II. I
u
2
= hb, u
4
u
2
+ a 2u + 1, u
5
+ u
4
u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
1
=
u
3
u
4
u
3
+ u
2
1
a
11
=
u
4
+ u
2
+ 2u 1
0
a
5
=
1
0
a
4
=
u
4
u
2
+ 1
u
4
a
9
=
u
3
u
4
+ u
3
u
2
+ 1
a
10
=
u
4
u
3
+ u
2
+ 2u 1
u
4
+ u
3
u
2
+ 1
a
12
=
u
4
+ u
2
+ 2u 1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
4
u
3
+ 2u
2
+ 4u 17
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
2
u
5
u
4
+ u
2
+ u 1
c
5
, c
11
u
5
c
6
u
5
+ u
4
u
2
+ u + 1
c
7
, c
8
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
9
, c
10
(u 1)
5
c
12
(u + 1)
5
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
2
, c
6
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
c
5
, c
11
y
5
c
9
, c
10
, c
12
(y 1)
5
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.758138 + 0.584034I
a = 1.47956 + 1.63976I
b = 0
0.17487 2.21397I 6.59361 0.42541I
u = 0.758138 0.584034I
a = 1.47956 1.63976I
b = 0
0.17487 + 2.21397I 6.59361 + 0.42541I
u = 0.935538 + 0.903908I
a = 0.044146 + 0.313338I
b = 0
9.31336 + 3.33174I 3.61324 + 0.36944I
u = 0.935538 0.903908I
a = 0.044146 0.313338I
b = 0
9.31336 3.33174I 3.61324 0.36944I
u = 0.645200
a = 2.04741
b = 0
2.52712 20.0390
17
III. I
u
3
= h−u
3
a u
2
a + 2u
3
+ au u
2
+ 2b u + 1, 2u
3
a + u
2
a + 3u
3
+
a
2
+ au u
2
a 2u, u
4
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
1
=
u
3
0
a
11
=
a
1
2
u
3
a u
3
+ ··· +
1
2
u
1
2
a
5
=
1
2
u
2
a
1
2
u
3
+ ··· +
1
2
a
1
2
1
2
u
3
a +
1
2
u
2
a + ··· +
1
2
u
3
2
a
4
=
1
2
u
2
a
1
2
u
3
+ ··· +
1
2
a
1
2
1
2
u
3
a u
3
+ ··· +
3
2
u
3
2
a
9
=
1
2
u
2
a
3
2
u
3
+ ···
1
2
a +
1
2
1
2
u
3
a + 2u
3
+ ···
1
2
u +
1
2
a
10
=
1
2
u
3
a + u
3
+ ··· + a +
1
2
1
2
u
3
a u
3
+ ··· +
1
2
u
1
2
a
12
=
1
2
u
3
a
3
2
u
3
+ ···
1
2
a +
5
2
u
1
2
u
3
a + 2u
3
+ ···
1
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
c
2
, c
6
(u
4
u
2
+ 1)
2
c
3
, c
4
, c
8
(u
2
+ 1)
4
c
5
, c
11
(u
4
+ 3u
2
+ 1)
2
c
7
(u
2
+ u + 1)
4
c
9
, c
10
(u
2
+ u 1)
4
c
12
(u
2
u 1)
4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
+ y + 1)
4
c
2
, c
6
(y
2
y + 1)
4
c
3
, c
4
, c
8
(y + 1)
8
c
5
, c
11
(y
2
+ 3y + 1)
4
c
9
, c
10
, c
12
(y
2
3y + 1)
4
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.344250 0.092242I
b = 0.618034I
0.65797 2.02988I 10.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 1.71028 + 0.72622I
b = 1.61803I
7.23771 2.02988I 10.00000 + 3.46410I
u = 0.866025 0.500000I
a = 1.344250 + 0.092242I
b = 0.618034I
0.65797 + 2.02988I 10.00000 3.46410I
u = 0.866025 0.500000I
a = 1.71028 0.72622I
b = 1.61803I
7.23771 + 2.02988I 10.00000 3.46410I
u = 0.866025 + 0.500000I
a = 1.092240 0.344250I
b = 1.61803I
7.23771 + 2.02988I 10.00000 3.46410I
u = 0.866025 + 0.500000I
a = 0.27378 + 2.71028I
b = 0.618034I
0.65797 + 2.02988I 10.00000 3.46410I
u = 0.866025 0.500000I
a = 1.092240 + 0.344250I
b = 1.61803I
7.23771 2.02988I 10.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.27378 2.71028I
b = 0.618034I
0.65797 2.02988I 10.00000 + 3.46410I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
· (u
85
+ 28u
84
+ ··· + 1107u + 81)
c
2
((u
4
u
2
+ 1)
2
)(u
5
u
4
+ u
2
+ u 1)(u
85
2u
84
+ ··· + 3u 9)
c
3
, c
4
((u
2
+ 1)
4
)(u
5
u
4
+ ··· + 3u 1)(u
85
2u
84
+ ··· + 144u 36)
c
5
, c
11
u
5
(u
4
+ 3u
2
+ 1)
2
(u
85
+ u
84
+ ··· 96u 32)
c
6
((u
4
u
2
+ 1)
2
)(u
5
+ u
4
u
2
+ u + 1)(u
85
2u
84
+ ··· + 3u 9)
c
7
(u
2
+ u + 1)
4
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
· (u
85
+ 28u
84
+ ··· + 1107u + 81)
c
8
((u
2
+ 1)
4
)(u
5
+ u
4
+ ··· + 3u + 1)(u
85
2u
84
+ ··· + 144u 36)
c
9
, c
10
((u 1)
5
)(u
2
+ u 1)
4
(u
85
10u
84
+ ··· + 17u 1)
c
12
((u + 1)
5
)(u
2
u 1)
4
(u
85
10u
84
+ ··· + 17u 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
+ y + 1)
4
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
85
+ 64y
84
+ ··· + 485595y 6561)
c
2
, c
6
(y
2
y + 1)
4
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
· (y
85
28y
84
+ ··· + 1107y 81)
c
3
, c
4
, c
8
(y + 1)
8
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
85
+ 80y
84
+ ··· + 16776y 1296)
c
5
, c
11
y
5
(y
2
+ 3y + 1)
4
(y
85
+ 45y
84
+ ··· + 22016y 1024)
c
9
, c
10
, c
12
((y 1)
5
)(y
2
3y + 1)
4
(y
85
80y
84
+ ··· 91y 1)
23