12a
0563
(K12a
0563
)
A knot diagram
1
Linearized knot diagam
3 7 9 8 11 12 2 4 1 5 6 10
Solving Sequence
3,9 2,4
1 10 8 5 11 7 12 6
c
3
c
1
c
9
c
8
c
4
c
10
c
7
c
12
c
6
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.21428 × 10
21
u
47
+ 3.07657 × 10
21
u
46
+ ··· + 1.91294 × 10
22
b + 2.10944 × 10
22
,
8.01226 × 10
20
u
47
8.31592 × 10
20
u
46
+ ··· + 9.56472 × 10
20
a + 3.53130 × 10
21
, u
48
u
47
+ ··· + u + 2i
I
u
2
= h−u
2
+ b, a 1, u
18
+ 6u
16
+ ··· + u 1i
I
u
3
= hb + 1, a
4
+ a
3
u 4a
3
3a
2
u + 5a
2
+ 3au 2a u + 1, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.21×10
21
u
47
+3.08×10
21
u
46
+· · ·+1.91×10
22
b+2.11×10
22
, 8.01×
10
20
u
47
8.32×10
20
u
46
+· · ·+9.56×10
20
a+3.53×10
21
, u
48
u
47
+· · ·+u+2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
2
=
0.837689u
47
+ 0.869438u
46
+ ··· + 13.2059u 3.69201
0.168028u
47
0.160829u
46
+ ··· 1.56252u 1.10272
a
4
=
1
u
2
a
1
=
0.669662u
47
+ 0.708609u
46
+ ··· + 11.6434u 4.79473
0.168028u
47
0.160829u
46
+ ··· 1.56252u 1.10272
a
10
=
0.573968u
47
+ 0.0603230u
46
+ ··· + 9.04562u + 5.11395
0.0433537u
47
+ 0.0687272u
46
+ ··· 4.47263u + 1.08386
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
0.775286u
47
+ 0.102961u
46
+ ··· + 16.4932u + 5.06341
0.115161u
47
0.190045u
46
+ ··· 4.11240u + 0.828323
a
7
=
0.519611u
47
+ 0.601722u
46
+ ··· + 25.7485u + 2.68654
0.0513589u
47
0.116669u
46
+ ··· 1.89721u + 1.51116
a
12
=
1.34327u
47
+ 1.07781u
46
+ ··· + 27.0507u + 5.07361
0.273830u
47
+ 0.198143u
46
+ ··· + 3.26013u 0.158606
a
6
=
1.33343u
47
1.45372u
46
+ ··· 17.4102u 8.92856
0.00796109u
47
+ 0.0832675u
46
+ ··· 0.966904u + 0.230758
(ii) Obstruction class = 1
(iii) Cusp Shapes =
27465448057329986227
27804404382329290780
u
47
1722649487279789829
2780440438232929078
u
46
+ ···
776992786016705604511
27804404382329290780
u
198347232390961135567
13902202191164645390
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
48
+ 17u
47
+ ··· + 35u + 4
c
2
, c
7
u
48
+ u
47
+ ··· 3u + 2
c
3
, c
4
, c
8
u
48
+ u
47
+ ··· u + 2
c
5
, c
6
, c
10
c
11
u
48
2u
47
+ ··· + u + 2
c
9
, c
12
u
48
8u
47
+ ··· 7639u + 1016
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
48
+ 37y
47
+ ··· + 12799y + 16
c
2
, c
7
y
48
+ 17y
47
+ ··· + 35y + 4
c
3
, c
4
, c
8
y
48
+ 53y
47
+ ··· 237y + 4
c
5
, c
6
, c
10
c
11
y
48
52y
47
+ ··· + 19y + 4
c
9
, c
12
y
48
+ 32y
47
+ ··· 318369y + 1032256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.279405 + 0.971105I
a = 0.633756 + 0.239746I
b = 0.165180 + 0.161172I
4.68544 + 3.19221I 6.37639 4.16497I
u = 0.279405 0.971105I
a = 0.633756 0.239746I
b = 0.165180 0.161172I
4.68544 3.19221I 6.37639 + 4.16497I
u = 0.881286 + 0.378029I
a = 0.468437 + 0.143230I
b = 0.67254 1.34172I
5.10511 9.85415I 11.23414 + 7.48976I
u = 0.881286 0.378029I
a = 0.468437 0.143230I
b = 0.67254 + 1.34172I
5.10511 + 9.85415I 11.23414 7.48976I
u = 0.845379 + 0.414724I
a = 0.399315 0.163435I
b = 0.586845 + 1.279740I
1.89498 + 7.08453I 7.53014 8.63075I
u = 0.845379 0.414724I
a = 0.399315 + 0.163435I
b = 0.586845 1.279740I
1.89498 7.08453I 7.53014 + 8.63075I
u = 0.757362 + 0.544501I
a = 0.177555 0.142317I
b = 0.315094 + 1.121340I
3.80725 + 0.44416I 9.21656 2.62442I
u = 0.757362 0.544501I
a = 0.177555 + 0.142317I
b = 0.315094 1.121340I
3.80725 0.44416I 9.21656 + 2.62442I
u = 0.801878 + 0.461107I
a = 0.308887 + 0.177382I
b = 0.484403 1.202350I
2.31942 3.03168I 5.96588 + 2.35658I
u = 0.801878 0.461107I
a = 0.308887 0.177382I
b = 0.484403 + 1.202350I
2.31942 + 3.03168I 5.96588 2.35658I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.094584 + 0.916633I
a = 0.842564 0.081921I
b = 0.0039149 0.0498200I
1.88453 1.52925I 1.27440 + 5.26025I
u = 0.094584 0.916633I
a = 0.842564 + 0.081921I
b = 0.0039149 + 0.0498200I
1.88453 + 1.52925I 1.27440 5.26025I
u = 0.019449 + 1.296200I
a = 0.96626 + 1.66275I
b = 0.218022 0.686915I
4.87695 + 2.29360I 0
u = 0.019449 1.296200I
a = 0.96626 1.66275I
b = 0.218022 + 0.686915I
4.87695 2.29360I 0
u = 0.662333 + 0.127045I
a = 0.823194 + 0.695101I
b = 1.028930 0.838109I
10.70200 3.57800I 16.9686 + 4.2625I
u = 0.662333 0.127045I
a = 0.823194 0.695101I
b = 1.028930 + 0.838109I
10.70200 + 3.57800I 16.9686 4.2625I
u = 0.027632 + 1.374070I
a = 0.60190 1.62387I
b = 0.134767 + 0.924503I
3.01436 0.56771I 0
u = 0.027632 1.374070I
a = 0.60190 + 1.62387I
b = 0.134767 0.924503I
3.01436 + 0.56771I 0
u = 0.218315 + 1.358270I
a = 0.09353 + 2.15802I
b = 0.696041 1.142180I
5.99306 6.70057I 0
u = 0.218315 1.358270I
a = 0.09353 2.15802I
b = 0.696041 + 1.142180I
5.99306 + 6.70057I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.574563 + 0.232091I
a = 0.449839 0.845197I
b = 0.830134 + 0.745730I
2.99542 + 2.92052I 16.1336 6.6064I
u = 0.574563 0.232091I
a = 0.449839 + 0.845197I
b = 0.830134 0.745730I
2.99542 2.92052I 16.1336 + 6.6064I
u = 0.17592 + 1.40998I
a = 0.17221 1.93269I
b = 0.509228 + 1.232380I
2.29935 + 5.57635I 0
u = 0.17592 1.40998I
a = 0.17221 + 1.93269I
b = 0.509228 1.232380I
2.29935 5.57635I 0
u = 0.09301 + 1.43048I
a = 0.33273 + 1.72234I
b = 0.243029 1.177930I
5.11959 2.66046I 0
u = 0.09301 1.43048I
a = 0.33273 1.72234I
b = 0.243029 + 1.177930I
5.11959 + 2.66046I 0
u = 0.328252 + 0.355874I
a = 0.529736 + 1.011980I
b = 0.606974 0.412729I
0.575619 1.189230I 7.30572 + 5.21199I
u = 0.328252 0.355874I
a = 0.529736 1.011980I
b = 0.606974 + 0.412729I
0.575619 + 1.189230I 7.30572 5.21199I
u = 0.33907 + 1.49289I
a = 0.27071 + 1.81325I
b = 0.88608 1.67141I
0.9224 14.2869I 0
u = 0.33907 1.49289I
a = 0.27071 1.81325I
b = 0.88608 + 1.67141I
0.9224 + 14.2869I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31588 + 1.50354I
a = 0.22485 1.79337I
b = 0.80439 + 1.67797I
8.10317 + 11.31590I 0
u = 0.31588 1.50354I
a = 0.22485 + 1.79337I
b = 0.80439 1.67797I
8.10317 11.31590I 0
u = 0.28776 + 1.51291I
a = 0.17153 + 1.77103I
b = 0.70857 1.67398I
8.73649 7.00574I 0
u = 0.28776 1.51291I
a = 0.17153 1.77103I
b = 0.70857 + 1.67398I
8.73649 + 7.00574I 0
u = 0.23601 + 1.52628I
a = 0.268656 + 1.050800I
b = 0.809501 0.930896I
3.13587 + 8.05851I 0
u = 0.23601 1.52628I
a = 0.268656 1.050800I
b = 0.809501 + 0.930896I
3.13587 8.05851I 0
u = 0.24303 + 1.52669I
a = 0.09228 1.72690I
b = 0.55642 + 1.66139I
2.98841 + 4.04672I 0
u = 0.24303 1.52669I
a = 0.09228 + 1.72690I
b = 0.55642 1.66139I
2.98841 4.04672I 0
u = 0.20089 + 1.53586I
a = 0.267467 1.098980I
b = 0.735565 + 1.017990I
10.08960 5.05548I 0
u = 0.20089 1.53586I
a = 0.267467 + 1.098980I
b = 0.735565 1.017990I
10.08960 + 5.05548I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16329 + 1.54443I
a = 0.262928 + 1.151930I
b = 0.650504 1.106080I
10.46800 + 0.72296I 0
u = 0.16329 1.54443I
a = 0.262928 1.151930I
b = 0.650504 + 1.106080I
10.46800 0.72296I 0
u = 0.11419 + 1.55675I
a = 0.245810 1.222640I
b = 0.537126 + 1.223150I
4.35322 + 2.28070I 0
u = 0.11419 1.55675I
a = 0.245810 + 1.222640I
b = 0.537126 1.223150I
4.35322 2.28070I 0
u = 0.276434 + 0.095381I
a = 2.68244 2.75338I
b = 1.136770 + 0.255170I
8.62006 3.30984I 17.2557 + 2.3212I
u = 0.276434 0.095381I
a = 2.68244 + 2.75338I
b = 1.136770 0.255170I
8.62006 + 3.30984I 17.2557 2.3212I
u = 0.198964 + 0.041420I
a = 0.39851 4.51714I
b = 0.975718 + 0.209762I
1.51896 1.35228I 14.3368 + 4.1508I
u = 0.198964 0.041420I
a = 0.39851 + 4.51714I
b = 0.975718 0.209762I
1.51896 + 1.35228I 14.3368 4.1508I
9
II. I
u
2
= h−u
2
+ b, a 1, u
18
+ 6u
16
+ · · · + u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
2
=
1
u
2
a
4
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
10
=
u
5
2u
3
u
u
5
u
3
+ u
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
11
4u
9
6u
7
6u
5
5u
3
2u
u
13
5u
11
9u
9
8u
7
6u
5
3u
3
+ u
a
7
=
0
u
a
12
=
u
8
+ 3u
6
+ 3u
4
+ 2u
2
+ 1
u
8
+ 2u
6
a
6
=
u
17
+ 6u
15
+ 15u
13
+ 22u
11
+ 23u
9
+ 18u
7
+ 10u
5
+ 4u
3
+ u
u
17
+ 5u
15
+ 9u
13
+ 8u
11
+ 5u
9
+ 2u
7
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
16u
10
4u
9
24u
8
12u
7
24u
6
12u
5
20u
4
8u
3
8u
2
4u 10
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 12u
17
+ ··· 5u + 1
c
2
, c
3
, c
4
c
7
, c
8
u
18
+ 6u
16
+ ··· u 1
c
5
, c
6
, c
10
c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
3
c
9
, c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
3
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
12y
17
+ ··· 57y + 1
c
2
, c
3
, c
4
c
7
, c
8
y
18
+ 12y
17
+ ··· 5y + 1
c
5
, c
6
, c
10
c
11
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
3
c
9
, c
12
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.637469 + 0.735789I
a = 1.00000
b = 0.135019 0.938086I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.637469 0.735789I
a = 1.00000
b = 0.135019 + 0.938086I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.639652 + 0.826288I
a = 1.00000
b = 0.273597 + 1.057070I
3.69558 + 4.59213I 8.58114 3.20482I
u = 0.639652 0.826288I
a = 1.00000
b = 0.273597 1.057070I
3.69558 4.59213I 8.58114 + 3.20482I
u = 0.182330 + 1.048680I
a = 1.00000
b = 1.066490 0.382411I
0.738851 13.41678 + 0.I
u = 0.182330 1.048680I
a = 1.00000
b = 1.066490 + 0.382411I
0.738851 13.41678 + 0.I
u = 0.667042 + 0.642083I
a = 1.00000
b = 0.032675 + 0.856592I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.667042 0.642083I
a = 1.00000
b = 0.032675 0.856592I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.724676 + 0.565991I
a = 1.00000
b = 0.204809 0.820320I
3.69558 + 4.59213I 8.58114 3.20482I
u = 0.724676 0.565991I
a = 1.00000
b = 0.204809 + 0.820320I
3.69558 4.59213I 8.58114 + 3.20482I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.313436 + 1.137860I
a = 1.00000
b = 1.196490 + 0.713294I
7.66009 12.26950 + 0.I
u = 0.313436 1.137860I
a = 1.00000
b = 1.196490 0.713294I
7.66009 12.26950 + 0.I
u = 0.626873
a = 1.00000
b = 0.392969
7.66009 12.2690
u = 0.029572 + 1.377870I
a = 1.00000
b = 1.89766 0.08149I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.029572 1.377870I
a = 1.00000
b = 1.89766 + 0.08149I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.085024 + 1.392280I
a = 1.00000
b = 1.93121 + 0.23675I
3.69558 4.59213I 8.58114 + 3.20482I
u = 0.085024 1.392280I
a = 1.00000
b = 1.93121 0.23675I
3.69558 + 4.59213I 8.58114 3.20482I
u = 0.364659
a = 1.00000
b = 0.132976
0.738851 13.4170
14
III. I
u
3
= hb + 1, a
3
u 3a
2
u + · · · 2a + 1, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
2
=
a
1
a
4
=
1
1
a
1
=
a 1
1
a
10
=
a
2
u + 2au u
au
a
8
=
u
0
a
5
=
0
1
a
11
=
a
2
u + 2au u
a
2
u + 3au u
a
7
=
au + u
u
a
12
=
a
3
+ 3a
2
2a
a
2
a 1
a
6
=
a
3
u 3a
2
u a
2
+ 3au + 2a u
a
3
u + a
3
3a
2
u 3a
2
+ 3au + 3a u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
4au + 8a + 4u 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
c
2
, c
3
, c
4
c
7
, c
8
(u
2
+ 1)
4
c
5
, c
6
, c
10
c
11
u
8
5u
6
+ 7u
4
2u
2
+ 1
c
9
(u
4
+ u
3
+ u
2
+ 1)
2
c
12
(u
4
u
3
+ u
2
+ 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
c
2
, c
3
, c
4
c
7
, c
8
(y + 1)
8
c
5
, c
6
, c
10
c
11
(y
4
5y
3
+ 7y
2
2y + 1)
2
c
9
, c
12
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.088708 0.851808I
b = 1.00000
6.79074 + 3.16396I 11.82674 2.56480I
u = 1.000000I
a = 0.279658 + 0.351808I
b = 1.00000
0.21101 1.41510I 8.17326 + 4.90874I
u = 1.000000I
a = 1.72034 + 0.35181I
b = 1.00000
0.21101 + 1.41510I 8.17326 4.90874I
u = 1.000000I
a = 1.91129 0.85181I
b = 1.00000
6.79074 3.16396I 11.82674 + 2.56480I
u = 1.000000I
a = 0.088708 + 0.851808I
b = 1.00000
6.79074 3.16396I 11.82674 + 2.56480I
u = 1.000000I
a = 0.279658 0.351808I
b = 1.00000
0.21101 + 1.41510I 8.17326 4.90874I
u = 1.000000I
a = 1.72034 0.35181I
b = 1.00000
0.21101 1.41510I 8.17326 + 4.90874I
u = 1.000000I
a = 1.91129 + 0.85181I
b = 1.00000
6.79074 + 3.16396I 11.82674 2.56480I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
18
+ 12u
17
+ ··· 5u + 1)(u
48
+ 17u
47
+ ··· + 35u + 4)
c
2
, c
7
((u
2
+ 1)
4
)(u
18
+ 6u
16
+ ··· u 1)(u
48
+ u
47
+ ··· 3u + 2)
c
3
, c
4
, c
8
((u
2
+ 1)
4
)(u
18
+ 6u
16
+ ··· u 1)(u
48
+ u
47
+ ··· u + 2)
c
5
, c
6
, c
10
c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
3
(u
8
5u
6
+ 7u
4
2u
2
+ 1)
· (u
48
2u
47
+ ··· + u + 2)
c
9
(u
4
+ u
3
+ u
2
+ 1)
2
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
3
· (u
48
8u
47
+ ··· 7639u + 1016)
c
12
(u
4
u
3
+ u
2
+ 1)
2
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
3
· (u
48
8u
47
+ ··· 7639u + 1016)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
18
12y
17
+ ··· 57y + 1)
· (y
48
+ 37y
47
+ ··· + 12799y + 16)
c
2
, c
7
((y + 1)
8
)(y
18
+ 12y
17
+ ··· 5y + 1)(y
48
+ 17y
47
+ ··· + 35y + 4)
c
3
, c
4
, c
8
((y + 1)
8
)(y
18
+ 12y
17
+ ··· 5y + 1)(y
48
+ 53y
47
+ ··· 237y + 4)
c
5
, c
6
, c
10
c
11
(y
4
5y
3
+ 7y
2
2y + 1)
2
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
3
· (y
48
52y
47
+ ··· + 19y + 4)
c
9
, c
12
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
3
· (y
48
+ 32y
47
+ ··· 318369y + 1032256)
20