12a
0564
(K12a
0564
)
A knot diagram
1
Linearized knot diagam
3 7 9 8 11 12 2 4 1 6 5 10
Solving Sequence
5,12
11 6
3,7
2 8 4 10 1 9
c
11
c
5
c
6
c
2
c
7
c
4
c
10
c
12
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
53
+ 4u
52
+ ··· + 4b + 4, 2u
55
4u
54
+ ··· + 4a 12, u
56
2u
55
+ ··· 5u + 2i
I
u
2
= ha
2
u
2
+ 2u
2
a + 2a
2
2u
2
+ b + 4a 4, 2a
2
u
2
+ a
3
+ 2u
2
a + 4a
2
+ au 2u
2
+ 2a u 4, u
3
+ 2u 1i
I
u
3
= h−u
8
+ u
7
4u
6
+ 3u
5
4u
4
+ 2u
3
+ b u 1, u
9
5u
7
8u
5
3u
3
+ a + u,
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1i
I
u
4
= h3a
2
u
2
2u
3
a + 4a
2
u 2u
2
a + 2u
3
+ 2a
2
2au + 2u
2
+ b + 2u,
2u
3
a
2
2a
2
u
2
+ 8u
3
a + a
3
4a
2
u + 3u
2
a 2u
3
4a
2
+ 13au u
2
+ 8a 3u 2,
u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
53
+4u
52
+· · ·+4b+4, 2u
55
4u
54
+· · ·+4a12, u
56
2u
55
+· · ·5u+2i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
1
2
u
55
+ u
54
+ ···
7
4
u + 3
1
4
u
53
u
52
+ ··· +
3
2
u 1
a
7
=
u
3
2u
u
3
+ u
a
2
=
1
4
u
51
+ 6u
49
+ ··· +
5
4
u + 1
1
4
u
53
25
4
u
51
+ ··· +
1
2
u
2
+
1
2
u
a
8
=
1
4
u
55
13
2
u
53
+ ···
1
4
u 1
3
4
u
55
u
54
+ ··· +
5
2
u 1
a
4
=
1
4
u
44
+
21
4
u
42
+ ··· +
1
2
u +
1
2
1
4
u
44
5u
42
+ ···
3
4
u
2
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
1
=
u
6
3u
4
2u
2
+ 1
u
8
+ 4u
6
+ 4u
4
a
9
=
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
u
12
6u
10
12u
8
8u
6
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
55
4u
54
+ ··· + 20u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
+ 19u
55
+ ··· 20u + 1
c
2
, c
7
u
56
+ u
55
+ ··· 10u
2
+ 1
c
3
, c
4
, c
8
u
56
+ u
55
+ ··· + 2u + 1
c
5
, c
10
, c
11
u
56
+ 2u
55
+ ··· + 5u + 2
c
6
u
56
2u
55
+ ··· 231u + 202
c
9
, c
12
u
56
8u
55
+ ··· 1317u + 136
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
56
+ 47y
55
+ ··· + 1224y + 1
c
2
, c
7
y
56
+ 19y
55
+ ··· 20y + 1
c
3
, c
4
, c
8
y
56
+ 63y
55
+ ··· 84y + 1
c
5
, c
10
, c
11
y
56
+ 52y
55
+ ··· + 19y + 4
c
6
y
56
+ 20y
55
+ ··· + 498907y + 40804
c
9
, c
12
y
56
+ 48y
55
+ ··· 423177y + 18496
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.167031 + 1.023460I
a = 0.581239 + 0.389226I
b = 0.786716 0.931788I
4.78319 + 2.48153I 3.50379 2.32484I
u = 0.167031 1.023460I
a = 0.581239 0.389226I
b = 0.786716 + 0.931788I
4.78319 2.48153I 3.50379 + 2.32484I
u = 0.692071 + 0.437803I
a = 0.66383 2.04682I
b = 0.37969 + 1.48563I
10.54030 5.20317I 1.76462 + 3.90235I
u = 0.692071 0.437803I
a = 0.66383 + 2.04682I
b = 0.37969 1.48563I
10.54030 + 5.20317I 1.76462 3.90235I
u = 0.708508 + 0.410403I
a = 1.96906 2.08951I
b = 1.10648 + 2.12776I
8.5419 + 11.5420I 4.16165 8.13234I
u = 0.708508 0.410403I
a = 1.96906 + 2.08951I
b = 1.10648 2.12776I
8.5419 11.5420I 4.16165 + 8.13234I
u = 0.622613 + 0.525563I
a = 1.77821 + 0.87570I
b = 0.85453 1.37150I
10.86790 + 0.81891I 1.02610 + 2.14303I
u = 0.622613 0.525563I
a = 1.77821 0.87570I
b = 0.85453 + 1.37150I
10.86790 0.81891I 1.02610 2.14303I
u = 0.592033 + 0.557273I
a = 1.57209 + 2.23463I
b = 0.22451 1.53219I
9.08740 7.17759I 2.84487 + 2.35339I
u = 0.592033 0.557273I
a = 1.57209 2.23463I
b = 0.22451 + 1.53219I
9.08740 + 7.17759I 2.84487 2.35339I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.103142 + 1.185330I
a = 0.186061 0.410343I
b = 1.46690 + 0.65983I
0.051945 0.385761I 0
u = 0.103142 1.185330I
a = 0.186061 + 0.410343I
b = 1.46690 0.65983I
0.051945 + 0.385761I 0
u = 0.669252 + 0.412330I
a = 2.47043 + 1.87049I
b = 1.39269 1.97696I
2.26755 7.24573I 6.66677 + 8.30952I
u = 0.669252 0.412330I
a = 2.47043 1.87049I
b = 1.39269 + 1.97696I
2.26755 + 7.24573I 6.66677 8.30952I
u = 0.206699 + 0.752355I
a = 0.574163 0.045388I
b = 0.468649 0.514420I
4.95627 + 2.53829I 2.18457 3.78654I
u = 0.206699 0.752355I
a = 0.574163 + 0.045388I
b = 0.468649 + 0.514420I
4.95627 2.53829I 2.18457 + 3.78654I
u = 0.582613 + 0.498044I
a = 1.36009 2.66583I
b = 0.26540 + 1.65618I
2.62946 + 3.09884I 5.44089 2.20028I
u = 0.582613 0.498044I
a = 1.36009 + 2.66583I
b = 0.26540 1.65618I
2.62946 3.09884I 5.44089 + 2.20028I
u = 0.676046 + 0.203719I
a = 0.329443 + 0.139721I
b = 0.294607 0.292968I
3.00074 + 0.91231I 5.60324 1.33604I
u = 0.676046 0.203719I
a = 0.329443 0.139721I
b = 0.294607 + 0.292968I
3.00074 0.91231I 5.60324 + 1.33604I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.692318 + 0.121292I
a = 0.85392 1.33610I
b = 0.25519 + 1.45796I
2.08625 5.88981I 8.03014 + 6.36741I
u = 0.692318 0.121292I
a = 0.85392 + 1.33610I
b = 0.25519 1.45796I
2.08625 + 5.88981I 8.03014 6.36741I
u = 0.201418 + 1.293670I
a = 0.870058 0.579976I
b = 0.43169 1.56082I
1.14651 + 5.97963I 0
u = 0.201418 1.293670I
a = 0.870058 + 0.579976I
b = 0.43169 + 1.56082I
1.14651 5.97963I 0
u = 0.261428 + 1.299180I
a = 1.039600 + 0.218945I
b = 0.49696 + 1.44809I
6.50957 9.34599I 0
u = 0.261428 1.299180I
a = 1.039600 0.218945I
b = 0.49696 1.44809I
6.50957 + 9.34599I 0
u = 0.580660 + 0.311133I
a = 0.0703685 0.0523659I
b = 0.409701 + 0.523982I
1.38214 1.50697I 13.53047 + 3.87884I
u = 0.580660 0.311133I
a = 0.0703685 + 0.0523659I
b = 0.409701 0.523982I
1.38214 + 1.50697I 13.53047 3.87884I
u = 0.008074 + 1.347070I
a = 0.668271 + 0.576392I
b = 0.353028 + 0.821443I
4.43635 1.45929I 0
u = 0.008074 1.347070I
a = 0.668271 0.576392I
b = 0.353028 0.821443I
4.43635 + 1.45929I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.521433 + 0.341179I
a = 1.33055 + 0.94373I
b = 0.774976 0.280233I
2.02037 + 1.59760I 0.90500 4.85866I
u = 0.521433 0.341179I
a = 1.33055 0.94373I
b = 0.774976 + 0.280233I
2.02037 1.59760I 0.90500 + 4.85866I
u = 0.246474 + 1.358800I
a = 0.252006 + 0.237582I
b = 0.157937 0.612956I
7.93137 + 4.24929I 0
u = 0.246474 1.358800I
a = 0.252006 0.237582I
b = 0.157937 + 0.612956I
7.93137 4.24929I 0
u = 0.604464 + 0.090171I
a = 1.22485 + 0.96150I
b = 0.55744 1.31425I
3.13696 + 3.05067I 15.3053 6.1769I
u = 0.604464 0.090171I
a = 1.22485 0.96150I
b = 0.55744 + 1.31425I
3.13696 3.05067I 15.3053 + 6.1769I
u = 0.20414 + 1.41040I
a = 0.154106 + 0.721195I
b = 1.068550 0.531298I
7.58921 + 4.29042I 0
u = 0.20414 1.41040I
a = 0.154106 0.721195I
b = 1.068550 + 0.531298I
7.58921 4.29042I 0
u = 0.22437 + 1.42514I
a = 0.0464407 0.0037704I
b = 0.198621 + 1.070760I
4.20552 4.47801I 0
u = 0.22437 1.42514I
a = 0.0464407 + 0.0037704I
b = 0.198621 1.070760I
4.20552 + 4.47801I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02481 + 1.45160I
a = 0.437034 0.432649I
b = 0.071252 1.121650I
11.67150 + 3.02727I 0
u = 0.02481 1.45160I
a = 0.437034 + 0.432649I
b = 0.071252 + 1.121650I
11.67150 3.02727I 0
u = 0.24729 + 1.46542I
a = 1.75227 0.41488I
b = 1.92961 2.80986I
8.32154 10.59610I 0
u = 0.24729 1.46542I
a = 1.75227 + 0.41488I
b = 1.92961 + 2.80986I
8.32154 + 10.59610I 0
u = 0.20280 + 1.47543I
a = 1.64369 0.44402I
b = 0.68333 + 2.27056I
8.98647 + 0.24581I 0
u = 0.20280 1.47543I
a = 1.64369 + 0.44402I
b = 0.68333 2.27056I
8.98647 0.24581I 0
u = 0.26313 + 1.47028I
a = 1.68249 + 0.12616I
b = 1.40694 + 2.97582I
14.6067 + 15.0877I 0
u = 0.26313 1.47028I
a = 1.68249 0.12616I
b = 1.40694 2.97582I
14.6067 15.0877I 0
u = 0.25179 + 1.47848I
a = 1.236920 0.501404I
b = 0.07447 + 1.78181I
16.7327 8.6480I 0
u = 0.25179 1.47848I
a = 1.236920 + 0.501404I
b = 0.07447 1.78181I
16.7327 + 8.6480I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.18754 + 1.49529I
a = 1.54445 + 0.24504I
b = 0.90159 1.78028I
15.7506 4.3922I 0
u = 0.18754 1.49529I
a = 1.54445 0.24504I
b = 0.90159 + 1.78028I
15.7506 + 4.3922I 0
u = 0.20634 + 1.49448I
a = 1.075950 0.501942I
b = 1.36447 1.63496I
17.4257 2.1759I 0
u = 0.20634 1.49448I
a = 1.075950 + 0.501942I
b = 1.36447 + 1.63496I
17.4257 + 2.1759I 0
u = 0.147340 + 0.378273I
a = 0.901441 + 0.594340I
b = 0.521618 + 0.321445I
0.581405 1.167200I 7.43245 + 5.35431I
u = 0.147340 0.378273I
a = 0.901441 0.594340I
b = 0.521618 0.321445I
0.581405 + 1.167200I 7.43245 5.35431I
10
II.
I
u
2
= ha
2
u
2
+2u
2
a+2a
2
2u
2
+b+4a4, 2a
2
u
2
+2u
2
a+· · ·+2a4, u
3
+2u1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
6
=
u
u + 1
a
3
=
a
a
2
u
2
2u
2
a 2a
2
+ 2u
2
4a + 4
a
7
=
1
u + 1
a
2
=
a
2
u
2
+ 2u
2
a + 2a
2
+ au 2u
2
+ 4a 4
2a
2
u
2
3u
2
a 3a
2
2au + 4u
2
5a + 6
a
8
=
2a
2
u
2
+ a
2
u + 3u
2
a + 4a
2
+ 2au 4u
2
+ 7a 2u 8
a
2
u
2
a
2
u a
2
au + 2u
2
2a + 2u + 2
a
4
=
a
2
u
2
+ 2u
2
a + 2a
2
+ au 2u
2
+ 4a 4
2a
2
u
2
3u
2
a 3a
2
2au + 4u
2
5a + 6
a
10
=
u
2
+ 1
u
a
1
=
u
u
2
a
9
=
1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 10
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 6u
8
+ 15u
7
+ 24u
6
+ 31u
5
+ 30u
4
+ 21u
3
+ 12u
2
+ 4u 1
c
2
, c
3
, c
4
c
7
, c
8
u
9
+ 3u
7
+ 3u
5
+ 3u
3
+ 2u + 1
c
5
, c
9
, c
10
c
11
, c
12
(u
3
+ 2u + 1)
3
c
6
(u
3
+ 3u
2
+ 5u + 2)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
6y
8
y
7
+ 36y
6
+ 15y
5
42y
4
+ 17y
3
+ 84y
2
+ 40y 1
c
2
, c
3
, c
4
c
7
, c
8
y
9
+ 6y
8
+ 15y
7
+ 24y
6
+ 31y
5
+ 30y
4
+ 21y
3
+ 12y
2
+ 4y 1
c
5
, c
9
, c
10
c
11
, c
12
(y
3
+ 4y
2
+ 4y 1)
3
c
6
(y
3
+ y
2
+ 13y 4)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 1.41033 + 0.65322I
b = 0.02182 2.22338I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.22670 + 1.46771I
a = 1.44687 + 0.73836I
b = 2.15352 + 1.99644I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.22670 + 1.46771I
a = 0.169027 0.060668I
b = 0.073872 1.103970I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.22670 1.46771I
a = 1.41033 0.65322I
b = 0.02182 + 2.22338I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 1.46771I
a = 1.44687 0.73836I
b = 2.15352 1.99644I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 1.46771I
a = 0.169027 + 0.060668I
b = 0.073872 + 1.103970I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.453398
a = 0.733086
b = 0.00791217
0.787199 12.6360
u = 0.453398
a = 2.57211 + 0.14119I
b = 1.20953 + 0.97910I
0.787199 12.6360
u = 0.453398
a = 2.57211 0.14119I
b = 1.20953 0.97910I
0.787199 12.6360
14
III. I
u
3
= h−u
8
+ u
7
4u
6
+ 3u
5
4u
4
+ 2u
3
+ b u 1, u
9
5u
7
8u
5
3u
3
+ a + u, u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
9
+ 5u
7
+ 8u
5
+ 3u
3
u
u
8
u
7
+ 4u
6
3u
5
+ 4u
4
2u
3
+ u + 1
a
7
=
u
3
2u
u
3
+ u
a
2
=
u
9
+ 5u
7
u
6
+ 8u
5
3u
4
+ 3u
3
2u
2
u + 1
2u
8
u
7
+ 8u
6
3u
5
+ 8u
4
2u
3
+ u + 1
a
8
=
u
8
4u
6
5u
4
2u
2
1
u
9
+ 4u
7
+ 5u
5
+ u
4
+ u
3
+ 2u
2
a
4
=
u
9
+ 5u
7
+ 8u
5
+ 3u
3
u
u
8
u
7
+ 4u
6
3u
5
+ 4u
4
2u
3
+ 2u + 1
a
10
=
u
2
+ 1
u
4
2u
2
a
1
=
u
6
3u
4
2u
2
+ 1
u
8
+ 4u
6
+ 4u
4
a
9
=
0
u
8
+ 3u
6
+ u
4
2u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 12u
4
+ 8u
2
8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
c
2
, c
3
, c
4
c
7
, c
8
(u
2
+ 1)
5
c
5
, c
10
, c
11
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
c
6
u
10
+ u
8
+ 8u
6
+ 3u
4
+ 3u
2
+ 1
c
9
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
12
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
c
2
, c
3
, c
4
c
7
, c
8
(y + 1)
10
c
5
, c
10
, c
11
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
c
6
(y
5
+ y
4
+ 8y
3
+ 3y
2
+ 3y + 1)
2
c
9
, c
12
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.217740I
a = 0.821196I
b = 1.58802 + 0.76683I
2.40108 6.51890
u = 1.217740I
a = 0.821196I
b = 1.58802 0.76683I
2.40108 6.51890
u = 0.549911 + 0.309916I
a = 1.38013 + 0.77780I
b = 1.261070 + 0.218641I
0.32910 1.53058I 7.48489 + 4.43065I
u = 0.549911 0.309916I
a = 1.38013 0.77780I
b = 1.261070 0.218641I
0.32910 + 1.53058I 7.48489 4.43065I
u = 0.549911 + 0.309916I
a = 1.38013 + 0.77780I
b = 0.383681 0.896862I
0.32910 + 1.53058I 7.48489 4.43065I
u = 0.549911 0.309916I
a = 1.38013 0.77780I
b = 0.383681 + 0.896862I
0.32910 1.53058I 7.48489 + 4.43065I
u = 0.21917 + 1.41878I
a = 0.106340 + 0.688402I
b = 1.43286 1.54951I
5.87256 + 4.40083I 3.25569 3.49859I
u = 0.21917 1.41878I
a = 0.106340 0.688402I
b = 1.43286 + 1.54951I
5.87256 4.40083I 3.25569 + 3.49859I
u = 0.21917 + 1.41878I
a = 0.106340 + 0.688402I
b = 0.967447 + 0.638115I
5.87256 4.40083I 3.25569 + 3.49859I
u = 0.21917 1.41878I
a = 0.106340 0.688402I
b = 0.967447 0.638115I
5.87256 + 4.40083I 3.25569 3.49859I
18
IV. I
u
4
=
h−2u
3
a+2u
3
+· · ·+2a
2
+b, 2u
3
a
2
+8u
3
a+· · ·+8a2, u
4
+u
3
+2u
2
+2u+1i
(i) Arc colorings
a
5
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
a
3a
2
u
2
+ 2u
3
a 4a
2
u + 2u
2
a 2u
3
2a
2
+ 2au 2u
2
2u
a
7
=
u
3
2u
u
3
+ u
a
2
=
u
3
a
2
a
2
u
2
a
2
u u
2
a + 2u
3
au + 2u
2
a + 4u + 4
5a
2
u
2
+ 3u
3
a 6a
2
u + 4u
2
a 4u
3
3a
2
+ 3au 4u
2
+ a 4u 2
a
8
=
u
3
a
2
+ 2a
2
u
2
2u
3
a + 2a
2
u u
2
a + 2u
3
+ a
2
2au a + 2u
2u
3
a
2
2a
2
u
2
+ u
3
a a
2
u 2u
2
a 2au + 2u
2
a + 2u + 2
a
4
=
u
3
a
2
a
2
u
2
a
2
u u
2
a + 2u
3
au + 2u
2
a + 4u + 4
5a
2
u
2
+ 3u
3
a 6a
2
u + 4u
2
a 4u
3
3a
2
+ 3au 4u
2
+ a 4u 2
a
10
=
u
2
+ 1
u
3
+ 2u + 1
a
1
=
2u
3
+ u
2
+ 3u + 3
u
3
u
2
u 2
a
9
=
u
3
+ 2u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 8u
11
+ ··· + 2u
2
+ 1
c
2
, c
3
, c
4
c
7
, c
8
u
12
+ 4u
10
u
9
+ 6u
8
3u
7
+ 6u
6
3u
5
+ 5u
4
3u
3
+ 2u
2
2u + 1
c
5
, c
9
, c
10
c
11
, c
12
(u
4
u
3
+ 2u
2
2u + 1)
3
c
6
(u
2
u + 1)
6
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
8y
11
+ ··· + 4y + 1
c
2
, c
3
, c
4
c
7
, c
8
y
12
+ 8y
11
+ ··· + 2y
2
+ 1
c
5
, c
9
, c
10
c
11
, c
12
(y
4
+ 3y
3
+ 2y
2
+ 1)
3
c
6
(y
2
+ y + 1)
6
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.231503 0.048586I
b = 0.496332 0.463157I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.621744 + 0.440597I
a = 0.64313 + 2.57341I
b = 0.45889 1.59209I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.621744 + 0.440597I
a = 2.55302 1.00733I
b = 1.42232 + 1.41895I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.621744 0.440597I
a = 0.231503 + 0.048586I
b = 0.496332 + 0.463157I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.64313 2.57341I
b = 0.45889 + 1.59209I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 2.55302 + 1.00733I
b = 1.42232 1.41895I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 0.305126 + 1.095260I
b = 0.07449 + 1.73534I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 0.365118 + 0.741654I
b = 2.37156 0.58328I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 0.528852 0.319426I
b = 0.0878104 0.0563109I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.121744 1.306620I
a = 0.305126 1.095260I
b = 0.07449 1.73534I
3.28987 + 2.02988I 4.00000 3.46410I
22
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.121744 1.306620I
a = 0.365118 0.741654I
b = 2.37156 + 0.58328I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 1.306620I
a = 0.528852 + 0.319426I
b = 0.0878104 + 0.0563109I
3.28987 + 2.02988I 4.00000 3.46410I
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
· (u
9
+ 6u
8
+ 15u
7
+ 24u
6
+ 31u
5
+ 30u
4
+ 21u
3
+ 12u
2
+ 4u 1)
· (u
12
+ 8u
11
+ ··· + 2u
2
+ 1)(u
56
+ 19u
55
+ ··· 20u + 1)
c
2
, c
7
(u
2
+ 1)
5
(u
9
+ 3u
7
+ 3u
5
+ 3u
3
+ 2u + 1)
· (u
12
+ 4u
10
u
9
+ 6u
8
3u
7
+ 6u
6
3u
5
+ 5u
4
3u
3
+ 2u
2
2u + 1)
· (u
56
+ u
55
+ ··· 10u
2
+ 1)
c
3
, c
4
, c
8
(u
2
+ 1)
5
(u
9
+ 3u
7
+ 3u
5
+ 3u
3
+ 2u + 1)
· (u
12
+ 4u
10
u
9
+ 6u
8
3u
7
+ 6u
6
3u
5
+ 5u
4
3u
3
+ 2u
2
2u + 1)
· (u
56
+ u
55
+ ··· + 2u + 1)
c
5
, c
10
, c
11
((u
3
+ 2u + 1)
3
)(u
4
u
3
+ 2u
2
2u + 1)
3
(u
10
+ 5u
8
+ ··· u
2
+ 1)
· (u
56
+ 2u
55
+ ··· + 5u + 2)
c
6
(u
2
u + 1)
6
(u
3
+ 3u
2
+ 5u + 2)
3
(u
10
+ u
8
+ 8u
6
+ 3u
4
+ 3u
2
+ 1)
· (u
56
2u
55
+ ··· 231u + 202)
c
9
(u
3
+ 2u + 1)
3
(u
4
u
3
+ 2u
2
2u + 1)
3
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
· (u
56
8u
55
+ ··· 1317u + 136)
c
12
(u
3
+ 2u + 1)
3
(u
4
u
3
+ 2u
2
2u + 1)
3
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
· (u
56
8u
55
+ ··· 1317u + 136)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
10
· (y
9
6y
8
y
7
+ 36y
6
+ 15y
5
42y
4
+ 17y
3
+ 84y
2
+ 40y 1)
· (y
12
8y
11
+ ··· + 4y + 1)(y
56
+ 47y
55
+ ··· + 1224y + 1)
c
2
, c
7
(y + 1)
10
· (y
9
+ 6y
8
+ 15y
7
+ 24y
6
+ 31y
5
+ 30y
4
+ 21y
3
+ 12y
2
+ 4y 1)
· (y
12
+ 8y
11
+ ··· + 2y
2
+ 1)(y
56
+ 19y
55
+ ··· 20y + 1)
c
3
, c
4
, c
8
(y + 1)
10
· (y
9
+ 6y
8
+ 15y
7
+ 24y
6
+ 31y
5
+ 30y
4
+ 21y
3
+ 12y
2
+ 4y 1)
· (y
12
+ 8y
11
+ ··· + 2y
2
+ 1)(y
56
+ 63y
55
+ ··· 84y + 1)
c
5
, c
10
, c
11
(y
3
+ 4y
2
+ 4y 1)
3
(y
4
+ 3y
3
+ 2y
2
+ 1)
3
· ((y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
)(y
56
+ 52y
55
+ ··· + 19y + 4)
c
6
(y
2
+ y + 1)
6
(y
3
+ y
2
+ 13y 4)
3
(y
5
+ y
4
+ 8y
3
+ 3y
2
+ 3y + 1)
2
· (y
56
+ 20y
55
+ ··· + 498907y + 40804)
c
9
, c
12
(y
3
+ 4y
2
+ 4y 1)
3
(y
4
+ 3y
3
+ 2y
2
+ 1)
3
· ((y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
)(y
56
+ 48y
55
+ ··· 423177y + 18496)
25