10
52
(K10a
80
)
A knot diagram
1
Linearized knot diagam
7 10 6 8 9 1 5 4 2 3
Solving Sequence
4,9
8 5 6 3
1,7
2 10
c
8
c
4
c
5
c
3
c
7
c
1
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
29
+ u
28
+ ··· + b 1, u
31
+ 2u
30
+ ··· + a 3, u
32
+ 2u
31
+ ··· 5u 1i
I
u
2
= hb 1, u
2
+ a + u 2, u
3
u
2
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2u
29
+u
28
+· · ·+b 1, u
31
+2u
30
+· · ·+a 3, u
32
+2u
31
+· · ·5u 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
+ 2u
u
3
+ u
a
3
=
u
7
4u
5
4u
3
u
7
3u
5
2u
3
+ u
a
1
=
u
31
2u
30
+ ··· + u + 3
2u
29
u
28
+ ··· + 2u + 1
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
31
2u
30
+ ··· + 6u + 4
u
29
u
28
+ ··· + u + 1
a
10
=
u
31
2u
30
+ ··· + 4u + 4
u
29
u
28
+ ··· + 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
31
+ 2u
30
+ 16u
29
+ 30u
28
+ 116u
27
+ 201u
26
+ 500u
25
+ 783u
24
+ 1406u
23
+ 1926u
22
+
2640u
21
+ 3005u
20
+ 3188u
19
+ 2713u
18
+ 2078u
17
+ 811u
16
+ 52u
15
886u
14
904u
13
890u
12
388u
11
158u
10
+ 98u
9
10u
7
104u
6
38u
5
21u
4
+ 42u
3
+ 21u
2
+ 6u 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
32
u
31
+ ··· + 4u + 8
c
2
, c
9
, c
10
u
32
4u
31
+ ··· + 2u 1
c
3
u
32
+ 6u
31
+ ··· 29u + 19
c
4
, c
7
, c
8
u
32
+ 2u
31
+ ··· 5u 1
c
5
u
32
2u
31
+ ··· 91u 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
32
21y
31
+ ··· 400y + 64
c
2
, c
9
, c
10
y
32
32y
31
+ ··· + 10y + 1
c
3
y
32
+ 18y
31
+ ··· 14597y + 361
c
4
, c
7
, c
8
y
32
+ 30y
31
+ ··· 17y + 1
c
5
y
32
+ 6y
31
+ ··· 2025y + 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.533924 + 0.635384I
a = 1.44678 + 1.16510I
b = 0.03219 + 1.54133I
8.33717 + 3.47045I 6.19300 0.53804I
u = 0.533924 0.635384I
a = 1.44678 1.16510I
b = 0.03219 1.54133I
8.33717 3.47045I 6.19300 + 0.53804I
u = 0.737398 + 0.363177I
a = 1.39466 1.92116I
b = 0.33070 1.92317I
7.36935 7.82848I 4.18330 + 6.10894I
u = 0.737398 0.363177I
a = 1.39466 + 1.92116I
b = 0.33070 + 1.92317I
7.36935 + 7.82848I 4.18330 6.10894I
u = 0.121416 + 1.191480I
a = 0.222642 0.520130I
b = 0.646759 0.202123I
1.84659 + 2.03195I 0.06352 4.09496I
u = 0.121416 1.191480I
a = 0.222642 + 0.520130I
b = 0.646759 + 0.202123I
1.84659 2.03195I 0.06352 + 4.09496I
u = 0.772369
a = 0.383393
b = 0.296121
2.56303 3.36180
u = 0.321817 + 1.204360I
a = 0.378231 + 0.177725I
b = 0.335766 + 0.398330I
6.26853 + 3.96490I 7.15642 4.13069I
u = 0.321817 1.204360I
a = 0.378231 0.177725I
b = 0.335766 0.398330I
6.26853 3.96490I 7.15642 + 4.13069I
u = 0.046033 + 1.276630I
a = 0.169895 + 1.097880I
b = 1.40941 0.16635I
4.89788 1.11555I 6.11098 0.26189I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.046033 1.276630I
a = 0.169895 1.097880I
b = 1.40941 + 0.16635I
4.89788 + 1.11555I 6.11098 + 0.26189I
u = 0.637579 + 0.336310I
a = 1.77319 + 1.89857I
b = 0.49204 + 1.80683I
1.10997 4.05552I 1.42840 + 6.80075I
u = 0.637579 0.336310I
a = 1.77319 1.89857I
b = 0.49204 1.80683I
1.10997 + 4.05552I 1.42840 6.80075I
u = 0.573185 + 0.380549I
a = 0.567444 0.158963I
b = 0.264757 + 0.307056I
3.48280 + 1.78898I 3.34736 3.66370I
u = 0.573185 0.380549I
a = 0.567444 + 0.158963I
b = 0.264757 0.307056I
3.48280 1.78898I 3.34736 + 3.66370I
u = 0.214793 + 1.351600I
a = 0.225799 + 0.123979I
b = 0.119070 0.331821I
3.45767 + 3.36417I 0.37870 3.50479I
u = 0.214793 1.351600I
a = 0.225799 0.123979I
b = 0.119070 + 0.331821I
3.45767 3.36417I 0.37870 + 3.50479I
u = 0.457656 + 0.423798I
a = 1.94595 1.20331I
b = 0.38062 1.37539I
1.72217 + 0.51232I 4.14141 + 0.14369I
u = 0.457656 0.423798I
a = 1.94595 + 1.20331I
b = 0.38062 + 1.37539I
1.72217 0.51232I 4.14141 0.14369I
u = 0.569557 + 0.125662I
a = 0.316122 + 0.218549I
b = 0.152586 0.164201I
1.244440 + 0.519638I 6.41959 1.56914I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.569557 0.125662I
a = 0.316122 0.218549I
b = 0.152586 + 0.164201I
1.244440 0.519638I 6.41959 + 1.56914I
u = 0.19027 + 1.43367I
a = 1.50108 + 0.51525I
b = 1.02431 2.05401I
7.59173 1.96238I 7.59391 + 0.I
u = 0.19027 1.43367I
a = 1.50108 0.51525I
b = 1.02431 + 2.05401I
7.59173 + 1.96238I 7.59391 + 0.I
u = 0.24454 + 1.43301I
a = 1.68707 0.19420I
b = 0.69085 + 2.37010I
6.78693 7.28997I 5.63030 + 6.08966I
u = 0.24454 1.43301I
a = 1.68707 + 0.19420I
b = 0.69085 2.37010I
6.78693 + 7.28997I 5.63030 6.08966I
u = 0.21981 + 1.44034I
a = 0.396703 0.147942I
b = 0.125890 + 0.603905I
9.32026 + 4.72345I 7.29654 3.13438I
u = 0.21981 1.44034I
a = 0.396703 + 0.147942I
b = 0.125890 0.603905I
9.32026 4.72345I 7.29654 + 3.13438I
u = 0.28148 + 1.45411I
a = 1.58198 0.01901I
b = 0.41766 2.30572I
13.2076 11.5375I 7.79347 + 6.25344I
u = 0.28148 1.45411I
a = 1.58198 + 0.01901I
b = 0.41766 + 2.30572I
13.2076 + 11.5375I 7.79347 6.25344I
u = 0.14244 + 1.49315I
a = 1.134180 0.397538I
b = 0.75514 + 1.63687I
15.2480 + 1.1861I 9.66994 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.14244 1.49315I
a = 1.134180 + 0.397538I
b = 0.75514 1.63687I
15.2480 1.1861I 9.66994 + 0.I
u = 0.270853
a = 3.43431
b = 0.930194
1.22025 10.0180
8
II. I
u
2
= hb 1, u
2
+ a + u 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
5
=
u
u
2
u + 1
a
6
=
u
2
+ 1
u
2
u + 1
a
3
=
1
0
a
1
=
u
2
u + 2
1
a
7
=
u
2
+ 1
u
2
u + 1
a
2
=
u
2
u + 2
1
a
10
=
u
2
u + 3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
4u + 4
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
3
c
2
(u + 1)
3
c
3
, c
5
u
3
u
2
+ 1
c
4
u
3
+ u
2
+ 2u + 1
c
7
, c
8
u
3
u
2
+ 2u 1
c
9
, c
10
(u 1)
3
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
3
c
2
, c
9
, c
10
(y 1)
3
c
3
, c
5
y
3
y
2
+ 2y 1
c
4
, c
7
, c
8
y
3
+ 3y
2
+ 2y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 0.744862I
b = 1.00000
4.66906 + 2.82812I 5.17211 2.41717I
u = 0.215080 1.307140I
a = 0.122561 + 0.744862I
b = 1.00000
4.66906 2.82812I 5.17211 + 2.41717I
u = 0.569840
a = 1.75488
b = 1.00000
0.531480 3.34420
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
3
(u
32
u
31
+ ··· + 4u + 8)
c
2
((u + 1)
3
)(u
32
4u
31
+ ··· + 2u 1)
c
3
(u
3
u
2
+ 1)(u
32
+ 6u
31
+ ··· 29u + 19)
c
4
(u
3
+ u
2
+ 2u + 1)(u
32
+ 2u
31
+ ··· 5u 1)
c
5
(u
3
u
2
+ 1)(u
32
2u
31
+ ··· 91u 17)
c
7
, c
8
(u
3
u
2
+ 2u 1)(u
32
+ 2u
31
+ ··· 5u 1)
c
9
, c
10
((u 1)
3
)(u
32
4u
31
+ ··· + 2u 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
3
(y
32
21y
31
+ ··· 400y + 64)
c
2
, c
9
, c
10
((y 1)
3
)(y
32
32y
31
+ ··· + 10y + 1)
c
3
(y
3
y
2
+ 2y 1)(y
32
+ 18y
31
+ ··· 14597y + 361)
c
4
, c
7
, c
8
(y
3
+ 3y
2
+ 2y 1)(y
32
+ 30y
31
+ ··· 17y + 1)
c
5
(y
3
y
2
+ 2y 1)(y
32
+ 6y
31
+ ··· 2025y + 289)
14