12a
0574
(K12a
0574
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 2 12 6 4 5 1 8
Solving Sequence
4,10
5 11
2,6
7 9 3 1 8 12
c
4
c
10
c
5
c
6
c
9
c
3
c
1
c
8
c
12
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h4u
24
5u
23
+ ··· + b + 5, 5u
24
7u
23
+ ··· + 2a + 4, u
25
3u
24
+ ··· + 9u
2
2i
I
u
2
= hu
17
a u
17
+ ··· + b + a, 2u
17
a + 2u
17
+ ··· + a
2
+ 2, u
18
+ 2u
17
+ ··· + u + 1i
I
u
3
= hb u + 1, 3a 2u + 3, u
2
3i
I
u
4
= hb, a + 1, u + 1i
I
u
5
= hb + 2, a + 1, u 1i
I
u
6
= hb + 1, a, u 1i
I
u
7
= hb + 1, a + 1, u 1i
I
v
1
= ha, b + 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4u
24
5u
23
+· · ·+b+5, 5u
24
7u
23
+· · ·+2a+4, u
25
3u
24
+· · ·+9u
2
2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
2
=
5
2
u
24
+
7
2
u
23
+ ···
3
2
u 2
4u
24
+ 5u
23
+ ··· 3u 5
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
5
2
u
24
+
7
2
u
23
+ ···
3
2
u 2
3u
24
+ 4u
23
+ ··· 2u 3
a
9
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
9
2
u
24
+
13
2
u
23
+ ···
7
2
u 5
7u
24
+ 9u
23
+ ··· 5u 9
a
8
=
u
7
+ 4u
5
4u
3
+ 2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
12
=
5
2
u
24
7
2
u
23
+ ··· +
1
2
u + 3
4u
24
5u
23
+ ··· + 4u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
24
8u
23
118u
22
+ 104u
21
+ 738u
20
568u
19
2532u
18
+
1728u
17
+ 5122u
16
3322u
15
6024u
14
+ 4356u
13
+ 3552u
12
3876u
11
116u
10
+
1936u
9
1222u
8
156u
7
+ 670u
6
304u
5
22u
4
+ 112u
3
56u
2
+ 16u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
25
+ 11u
24
+ ··· + 16u + 1
c
2
, c
6
, c
7
c
12
u
25
u
24
+ ··· 2u 1
c
3
, c
4
, c
5
c
9
, c
10
u
25
3u
24
+ ··· + 9u
2
2
c
8
u
25
15u
24
+ ··· 272u + 142
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
25
+ 13y
24
+ ··· + 88y 1
c
2
, c
6
, c
7
c
12
y
25
11y
24
+ ··· + 16y 1
c
3
, c
4
, c
5
c
9
, c
10
y
25
33y
24
+ ··· + 36y 4
c
8
y
25
9y
24
+ ··· + 269092y 20164
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.014520 + 0.347002I
a = 0.043435 + 0.313283I
b = 1.26937 + 1.85429I
4.53390 + 11.98000I 18.3056 9.4054I
u = 1.014520 0.347002I
a = 0.043435 0.313283I
b = 1.26937 1.85429I
4.53390 11.98000I 18.3056 + 9.4054I
u = 0.875840 + 0.298355I
a = 0.324656 + 0.199831I
b = 0.824925 0.525750I
0.08743 + 1.64240I 12.36047 1.45966I
u = 0.875840 0.298355I
a = 0.324656 0.199831I
b = 0.824925 + 0.525750I
0.08743 1.64240I 12.36047 + 1.45966I
u = 1.08434
a = 0.492978
b = 0.942393
5.05178 16.4940
u = 1.142900 + 0.163650I
a = 0.760257 0.659750I
b = 1.148230 0.116814I
6.80316 3.32641I 19.9139 + 4.3823I
u = 1.142900 0.163650I
a = 0.760257 + 0.659750I
b = 1.148230 + 0.116814I
6.80316 + 3.32641I 19.9139 4.3823I
u = 0.748460 + 0.331609I
a = 0.182754 0.355577I
b = 0.439503 1.224670I
0.58577 4.17677I 12.9289 + 7.8019I
u = 0.748460 0.331609I
a = 0.182754 + 0.355577I
b = 0.439503 + 1.224670I
0.58577 + 4.17677I 12.9289 7.8019I
u = 0.489290 + 0.461642I
a = 0.494840 0.083674I
b = 1.112620 + 0.488193I
1.55633 + 5.36068I 15.2414 2.7515I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.489290 0.461642I
a = 0.494840 + 0.083674I
b = 1.112620 0.488193I
1.55633 5.36068I 15.2414 + 2.7515I
u = 0.223404 + 0.580813I
a = 0.00021 + 2.17964I
b = 0.147329 0.569907I
0.71018 8.82975I 13.3096 + 8.6436I
u = 0.223404 0.580813I
a = 0.00021 2.17964I
b = 0.147329 + 0.569907I
0.71018 + 8.82975I 13.3096 8.6436I
u = 0.047295 + 0.535702I
a = 0.79115 1.42217I
b = 0.192529 + 0.279886I
2.69786 + 1.19945I 6.93738 2.54623I
u = 0.047295 0.535702I
a = 0.79115 + 1.42217I
b = 0.192529 0.279886I
2.69786 1.19945I 6.93738 + 2.54623I
u = 1.63846 + 0.04838I
a = 0.24414 + 2.30889I
b = 0.31656 + 2.94869I
7.64782 + 5.42310I 15.0279 5.6441I
u = 1.63846 0.04838I
a = 0.24414 2.30889I
b = 0.31656 2.94869I
7.64782 5.42310I 15.0279 + 5.6441I
u = 0.337545
a = 0.668217
b = 0.205875
0.538410 18.2630
u = 1.68786 + 0.06949I
a = 1.26126 + 1.27240I
b = 2.17832 + 1.75017I
9.13866 3.01203I 13.72954 + 0.I
u = 1.68786 0.06949I
a = 1.26126 1.27240I
b = 2.17832 1.75017I
9.13866 + 3.01203I 13.72954 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72244 + 0.09263I
a = 1.48000 2.81178I
b = 2.64308 3.71258I
14.2211 13.7690I 19.5082 + 7.8820I
u = 1.72244 0.09263I
a = 1.48000 + 2.81178I
b = 2.64308 + 3.71258I
14.2211 + 13.7690I 19.5082 7.8820I
u = 1.74758
a = 1.18512
b = 1.50038
15.2938 14.4450
u = 1.75336 + 0.03699I
a = 0.959572 0.248462I
b = 0.992169 0.771791I
17.2303 + 2.5055I 21.1359 5.5116I
u = 1.75336 0.03699I
a = 0.959572 + 0.248462I
b = 0.992169 + 0.771791I
17.2303 2.5055I 21.1359 + 5.5116I
7
II.
I
u
2
= hu
17
au
17
+· · ·+b+a, 2u
17
a+2u
17
+· · ·+a
2
+2, u
18
+2u
17
+· · ·+u+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
2
=
a
u
17
a + u
17
+ ··· a + u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
a
u
17
a u
17
+ ··· + a u
a
9
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
u
17
a + 11u
15
a + ··· + a 1
2u
17
a + u
17
+ ··· a + u
a
8
=
u
7
+ 4u
5
4u
3
+ 2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
12
=
u
13
u
11
a + ··· + a 1
u
17
a + u
17
+ ··· + 2u
2
+ a
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
15
40u
13
+152u
11
+4u
10
272u
9
28u
8
+232u
7
+64u
6
84u
5
52u
4
+12u
2
+4u14
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
36
+ 20u
35
+ ··· + 66u + 9
c
2
, c
6
, c
7
c
12
u
36
10u
34
+ ··· + 11u
2
3
c
3
, c
4
, c
5
c
9
, c
10
(u
18
+ 2u
17
+ ··· + u + 1)
2
c
8
(u
18
+ 4u
17
+ ··· + 5u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
36
8y
35
+ ··· + 198y + 81
c
2
, c
6
, c
7
c
12
y
36
20y
35
+ ··· 66y + 9
c
3
, c
4
, c
5
c
9
, c
10
(y
18
24y
17
+ ··· + 3y + 1)
2
c
8
(y
18
+ 22y
16
+ ··· 65y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.972680 + 0.237177I
a = 1.129940 0.718306I
b = 1.113160 + 0.114624I
6.99539 + 3.19755I 20.6137 5.3239I
u = 0.972680 + 0.237177I
a = 0.005899 + 0.226891I
b = 0.94715 + 2.42519I
6.99539 + 3.19755I 20.6137 5.3239I
u = 0.972680 0.237177I
a = 1.129940 + 0.718306I
b = 1.113160 0.114624I
6.99539 3.19755I 20.6137 + 5.3239I
u = 0.972680 0.237177I
a = 0.005899 0.226891I
b = 0.94715 2.42519I
6.99539 3.19755I 20.6137 + 5.3239I
u = 0.965445 + 0.329507I
a = 0.319004 0.279303I
b = 0.711465 + 0.510542I
1.96003 6.64718I 15.2451 + 6.1969I
u = 0.965445 + 0.329507I
a = 0.001264 0.306149I
b = 1.05963 1.87946I
1.96003 6.64718I 15.2451 + 6.1969I
u = 0.965445 0.329507I
a = 0.319004 + 0.279303I
b = 0.711465 0.510542I
1.96003 + 6.64718I 15.2451 6.1969I
u = 0.965445 0.329507I
a = 0.001264 + 0.306149I
b = 1.05963 + 1.87946I
1.96003 + 6.64718I 15.2451 6.1969I
u = 0.884294
a = 1.43019
b = 0.962086
5.00473 16.9870
u = 0.884294
a = 0.144030
b = 1.72715
5.00473 16.9870
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.572262 + 0.347341I
a = 0.345746 + 0.427514I
b = 0.323982 + 0.688753I
0.205439 0.564924I 12.70794 1.84066I
u = 0.572262 + 0.347341I
a = 0.448687 + 0.081566I
b = 0.979928 0.500327I
0.205439 0.564924I 12.70794 1.84066I
u = 0.572262 0.347341I
a = 0.345746 0.427514I
b = 0.323982 0.688753I
0.205439 + 0.564924I 12.70794 + 1.84066I
u = 0.572262 0.347341I
a = 0.448687 0.081566I
b = 0.979928 + 0.500327I
0.205439 + 0.564924I 12.70794 + 1.84066I
u = 0.158501 + 0.549521I
a = 0.656801 + 1.100770I
b = 0.342703 0.177435I
1.49299 + 3.66002I 9.51029 4.64953I
u = 0.158501 + 0.549521I
a = 0.32363 2.20170I
b = 0.075367 + 0.478624I
1.49299 + 3.66002I 9.51029 4.64953I
u = 0.158501 0.549521I
a = 0.656801 1.100770I
b = 0.342703 + 0.177435I
1.49299 3.66002I 9.51029 + 4.64953I
u = 0.158501 0.549521I
a = 0.32363 + 2.20170I
b = 0.075367 0.478624I
1.49299 3.66002I 9.51029 + 4.64953I
u = 0.184698 + 0.383796I
a = 0.515622 0.022033I
b = 1.164460 + 0.166059I
3.44032 1.02752I 14.6811 + 6.4558I
u = 0.184698 + 0.383796I
a = 0.63653 + 3.61007I
b = 0.227517 0.284301I
3.44032 1.02752I 14.6811 + 6.4558I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.184698 0.383796I
a = 0.515622 + 0.022033I
b = 1.164460 0.166059I
3.44032 + 1.02752I 14.6811 6.4558I
u = 0.184698 0.383796I
a = 0.63653 3.61007I
b = 0.227517 + 0.284301I
3.44032 + 1.02752I 14.6811 6.4558I
u = 1.62858
a = 0.74507 + 1.95151I
b = 1.21459 + 2.49051I
7.25470 14.0270
u = 1.62858
a = 0.74507 1.95151I
b = 1.21459 2.49051I
7.25470 14.0270
u = 1.70718 + 0.02414I
a = 0.860242 + 0.085930I
b = 0.559302 + 0.302376I
14.4445 + 0.2735I 18.2189 + 1.0708I
u = 1.70718 + 0.02414I
a = 1.96468 1.25832I
b = 3.02809 1.79960I
14.4445 + 0.2735I 18.2189 + 1.0708I
u = 1.70718 0.02414I
a = 0.860242 0.085930I
b = 0.559302 0.302376I
14.4445 0.2735I 18.2189 1.0708I
u = 1.70718 0.02414I
a = 1.96468 + 1.25832I
b = 3.02809 + 1.79960I
14.4445 0.2735I 18.2189 1.0708I
u = 1.70822 + 0.08549I
a = 1.22072 1.11193I
b = 2.18354 1.58992I
11.40320 + 8.29410I 16.5396 4.6645I
u = 1.70822 + 0.08549I
a = 1.12540 + 2.95401I
b = 2.04448 + 3.93426I
11.40320 + 8.29410I 16.5396 4.6645I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.70822 0.08549I
a = 1.22072 + 1.11193I
b = 2.18354 + 1.58992I
11.40320 8.29410I 16.5396 + 4.6645I
u = 1.70822 0.08549I
a = 1.12540 2.95401I
b = 2.04448 3.93426I
11.40320 8.29410I 16.5396 + 4.6645I
u = 1.71227 + 0.06112I
a = 0.814985 0.187785I
b = 0.451319 0.694586I
16.5429 4.3884I 20.9761 + 3.5533I
u = 1.71227 + 0.06112I
a = 1.00266 3.75542I
b = 1.83542 5.24315I
16.5429 4.3884I 20.9761 + 3.5533I
u = 1.71227 0.06112I
a = 0.814985 + 0.187785I
b = 0.451319 + 0.694586I
16.5429 + 4.3884I 20.9761 3.5533I
u = 1.71227 0.06112I
a = 1.00266 + 3.75542I
b = 1.83542 + 5.24315I
16.5429 + 4.3884I 20.9761 3.5533I
14
III. I
u
3
= hb u + 1, 3a 2u + 3, u
2
3i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
3
a
11
=
u
2u
a
2
=
2
3
u 1
u 1
a
6
=
2
3
a
7
=
2
3
u 1
u 2
a
9
=
u
u
a
3
=
2
3
a
1
=
2
3
u + 1
u + 2
a
8
=
u
2u
a
12
=
1
3
u + 1
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
3
c
6
, c
12
(u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 3)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.73205
a = 0.154701
b = 0.732051
16.4493 24.0000
u = 1.73205
a = 2.15470
b = 2.73205
16.4493 24.0000
18
IV. I
u
4
= hb, a + 1, u + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
11
=
1
0
a
2
=
1
0
a
6
=
0
1
a
7
=
1
1
a
9
=
1
1
a
3
=
0
1
a
1
=
1
1
a
8
=
1
0
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
9
c
10
, c
11
, c
12
u 1
c
2
, c
3
, c
4
c
5
, c
7
, c
8
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
6.57974 24.0000
22
V. I
u
5
= hb + 2, a + 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
11
=
1
0
a
2
=
1
2
a
6
=
0
1
a
7
=
1
1
a
9
=
1
1
a
3
=
0
1
a
1
=
1
1
a
8
=
1
0
a
12
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
8
c
11
, c
12
u 1
c
2
, c
7
, c
9
c
10
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 2.00000
6.57974 24.0000
26
VI. I
u
6
= hb + 1, a, u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
11
=
1
0
a
2
=
0
1
a
6
=
0
1
a
7
=
0
1
a
9
=
1
1
a
3
=
0
1
a
1
=
0
1
a
8
=
1
0
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
c
3
, c
4
, c
5
c
7
, c
9
, c
10
c
12
u 1
c
8
, c
11
u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
c
3
, c
4
, c
5
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
30
VII. I
u
7
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
1
a
5
=
1
1
a
11
=
1
0
a
2
=
1
1
a
6
=
0
1
a
7
=
1
0
a
9
=
1
1
a
3
=
0
1
a
1
=
1
0
a
8
=
1
0
a
12
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
9
c
10
u 1
c
7
, c
11
, c
12
u
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y 1
c
7
, c
11
, c
12
y
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
4.93480 18.0000
34
VIII. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
5
=
1
0
a
11
=
1
0
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
9
=
1
0
a
3
=
1
0
a
1
=
1
1
a
8
=
1
0
a
12
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
38
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
5
(u + 1)(u
25
+ 11u
24
+ ··· + 16u + 1)
· (u
36
+ 20u
35
+ ··· + 66u + 9)
c
2
, c
7
u(u 1)
4
(u + 1)
2
(u
25
u
24
+ ··· 2u 1)
· (u
36
10u
34
+ ··· + 11u
2
3)
c
3
, c
4
, c
5
c
9
, c
10
u(u 1)
3
(u + 1)(u
2
3)(u
18
+ 2u
17
+ ··· + u + 1)
2
· (u
25
3u
24
+ ··· + 9u
2
2)
c
6
, c
12
u(u 1)
3
(u + 1)
3
(u
25
u
24
+ ··· 2u 1)
· (u
36
10u
34
+ ··· + 11u
2
3)
c
8
u(u 1)(u + 1)
3
(u
2
3)(u
18
+ 4u
17
+ ··· + 5u 1)
2
· (u
25
15u
24
+ ··· 272u + 142)
39
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
y(y 1)
6
(y
25
+ 13y
24
+ ··· + 88y 1)(y
36
8y
35
+ ··· + 198y + 81)
c
2
, c
6
, c
7
c
12
y(y 1)
6
(y
25
11y
24
+ ··· + 16y 1)(y
36
20y
35
+ ··· 66y + 9)
c
3
, c
4
, c
5
c
9
, c
10
y(y 3)
2
(y 1)
4
(y
18
24y
17
+ ··· + 3y + 1)
2
· (y
25
33y
24
+ ··· + 36y 4)
c
8
y(y 3)
2
(y 1)
4
(y
18
+ 22y
16
+ ··· 65y + 1)
2
· (y
25
9y
24
+ ··· + 269092y 20164)
40