12a
0577
(K12a
0577
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 2 12 1 4 6 5 8
Solving Sequence
1,8 4,9
10 5 3 2 12 7 6 11
c
8
c
9
c
4
c
3
c
1
c
12
c
7
c
6
c
11
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.56312 × 10
33
u
48
+ 2.83092 × 10
33
u
47
+ ··· + 7.56342 × 10
33
b + 4.45246 × 10
32
,
1.28759 × 10
35
u
48
+ 2.69158 × 10
35
u
47
+ ··· + 1.21015 × 10
35
a + 9.76615 × 10
34
, u
49
2u
48
+ ··· u + 1i
I
u
2
= h−u
5
+ u
3
+ b u, u
3
+ a, u
18
6u
16
+ ··· u 1i
I
u
3
= hb + 1, a
4
4a
3
+ 3a
2
+ 2a + 1, u + 1i
I
u
4
= hb 1, a
4
+ 4a
3
+ 5a
2
+ 2a 1, u 1i
I
u
5
= hb + 1, a 1, u + 1i
* 5 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.56×10
33
u
48
+2.83×10
33
u
47
+· · ·+7.56×10
33
b+4.45×10
32
, 1.29×
10
35
u
48
+2.69×10
35
u
47
+· · ·+1.21×10
35
a+9.77×10
34
, u
49
2u
48
+· · ·u+1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
1.06400u
48
2.22417u
47
+ ··· 66.3671u 0.807022
0.338884u
48
0.374291u
47
+ ··· 9.12038u 0.0588683
a
9
=
1
u
2
a
10
=
0.0728905u
48
+ 0.0869859u
47
+ ··· 20.9570u 12.0327
0.0255946u
48
0.118358u
47
+ ··· + 0.625886u 1.30939
a
5
=
0.437918u
48
+ 0.654552u
47
+ ··· + 53.0608u + 0.351204
0.194691u
48
0.265650u
47
+ ··· + 6.68311u + 0.189616
a
3
=
0.998861u
48
2.15004u
47
+ ··· 56.0865u 0.844336
0.314692u
48
0.206403u
47
+ ··· 9.12938u 0.115001
a
2
=
1.24728u
48
2.43234u
47
+ ··· 64.0218u 0.840988
0.0651347u
48
0.0741368u
47
+ ··· 9.28056u + 0.0373145
a
12
=
u
u
a
7
=
u
2
+ 1
u
2
a
6
=
0.0588683u
48
+ 0.221147u
47
+ ··· 22.4060u 9.17925
0.0961828u
48
0.0813832u
47
+ ··· + 0.256973u 1.06400
a
11
=
0.471607u
48
+ 1.41230u
47
+ ··· 23.3549u 5.40971
0.141421u
48
+ 0.0729172u
47
+ ··· + 2.01016u 1.08423
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.776631u
48
+ 0.563664u
47
+ ··· + 20.3985u + 3.27444
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
49
+ 16u
48
+ ··· + 51u + 1
c
2
, c
6
u
49
2u
48
+ ··· + 3u 1
c
3
, c
4
, c
9
u
49
+ 2u
48
+ ··· 24u + 16
c
5
, c
10
, c
11
u
49
2u
48
+ ··· 2u + 2
c
7
, c
8
, c
12
u
49
+ 2u
48
+ ··· u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
49
+ 44y
48
+ ··· + 1819y 1
c
2
, c
6
y
49
16y
48
+ ··· + 51y 1
c
3
, c
4
, c
9
y
49
50y
48
+ ··· 8256y 256
c
5
, c
10
, c
11
y
49
+ 38y
48
+ ··· + 8y 4
c
7
, c
8
, c
12
y
49
56y
48
+ ··· + 99y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.506103 + 0.862902I
a = 0.500355 + 1.042960I
b = 0.781459 + 0.968591I
3.13730 0.87606I 7.33623 + 1.94038I
u = 0.506103 0.862902I
a = 0.500355 1.042960I
b = 0.781459 0.968591I
3.13730 + 0.87606I 7.33623 1.94038I
u = 0.441469 + 0.898603I
a = 0.587546 + 0.830187I
b = 1.30109 + 0.70065I
2.66998 10.11010I 6.39603 + 7.85117I
u = 0.441469 0.898603I
a = 0.587546 0.830187I
b = 1.30109 0.70065I
2.66998 + 10.11010I 6.39603 7.85117I
u = 0.473125 + 0.885514I
a = 0.561307 + 0.937339I
b = 1.076850 + 0.869299I
6.86021 + 5.51403I 10.47160 5.14621I
u = 0.473125 0.885514I
a = 0.561307 0.937339I
b = 1.076850 0.869299I
6.86021 5.51403I 10.47160 + 5.14621I
u = 1.06485
a = 1.21417
b = 0.142650
5.55834 16.5270
u = 1.080520 + 0.079944I
a = 1.207880 + 0.284396I
b = 0.160341 0.198571I
1.65369 3.96617I 11.77753 + 3.57951I
u = 1.080520 0.079944I
a = 1.207880 0.284396I
b = 0.160341 + 0.198571I
1.65369 + 3.96617I 11.77753 3.57951I
u = 0.272859 + 0.717075I
a = 0.097380 + 0.638899I
b = 0.442768 0.568471I
4.96406 + 6.00920I 0.78370 7.92298I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.272859 0.717075I
a = 0.097380 0.638899I
b = 0.442768 + 0.568471I
4.96406 6.00920I 0.78370 + 7.92298I
u = 0.635672 + 0.423399I
a = 0.152656 + 0.981747I
b = 0.481748 0.043197I
1.98468 + 1.46890I 7.38226 4.62534I
u = 0.635672 0.423399I
a = 0.152656 0.981747I
b = 0.481748 + 0.043197I
1.98468 1.46890I 7.38226 + 4.62534I
u = 0.377239 + 0.635400I
a = 0.042557 + 0.925611I
b = 0.106013 0.171567I
0.22370 3.57957I 7.57049 + 8.69582I
u = 0.377239 0.635400I
a = 0.042557 0.925611I
b = 0.106013 + 0.171567I
0.22370 + 3.57957I 7.57049 8.69582I
u = 0.629729
a = 0.0259489
b = 0.419260
0.715837 14.7920
u = 1.367690 + 0.118584I
a = 0.083488 0.457258I
b = 0.151194 0.356963I
1.71441 + 2.34609I 0
u = 1.367690 0.118584I
a = 0.083488 + 0.457258I
b = 0.151194 + 0.356963I
1.71441 2.34609I 0
u = 1.370000 + 0.090098I
a = 1.174840 + 0.183507I
b = 1.076130 + 0.107236I
2.02971 4.19323I 0
u = 1.370000 0.090098I
a = 1.174840 0.183507I
b = 1.076130 0.107236I
2.02971 + 4.19323I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45161 + 0.04249I
a = 0.952579 0.218245I
b = 1.17797 + 0.84568I
6.85291 + 0.94088I 0
u = 1.45161 0.04249I
a = 0.952579 + 0.218245I
b = 1.17797 0.84568I
6.85291 0.94088I 0
u = 1.43096 + 0.24886I
a = 1.232470 + 0.036520I
b = 1.54657 0.17959I
0.52977 9.47056I 0
u = 1.43096 0.24886I
a = 1.232470 0.036520I
b = 1.54657 + 0.17959I
0.52977 + 9.47056I 0
u = 1.46839 + 0.13155I
a = 0.244748 + 0.347671I
b = 0.535951 1.225870I
4.54898 2.99003I 0
u = 1.46839 0.13155I
a = 0.244748 0.347671I
b = 0.535951 + 1.225870I
4.54898 + 2.99003I 0
u = 1.48327 + 0.04934I
a = 0.376466 + 0.449946I
b = 0.38527 1.44906I
4.87290 2.72445I 0
u = 1.48327 0.04934I
a = 0.376466 0.449946I
b = 0.38527 + 1.44906I
4.87290 + 2.72445I 0
u = 1.47136 + 0.20824I
a = 0.878047 + 0.378522I
b = 1.42808 0.90342I
5.80687 + 6.61465I 0
u = 1.47136 0.20824I
a = 0.878047 0.378522I
b = 1.42808 + 0.90342I
5.80687 6.61465I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.315421 + 0.397601I
a = 0.039889 + 1.284920I
b = 0.405532 0.300525I
1.36715 + 1.10974I 0.89311 1.51851I
u = 0.315421 0.397601I
a = 0.039889 1.284920I
b = 0.405532 + 0.300525I
1.36715 1.10974I 0.89311 + 1.51851I
u = 0.094951 + 0.466215I
a = 0.95838 + 1.34005I
b = 0.572924 0.727360I
6.38447 0.32683I 3.51715 + 0.79678I
u = 0.094951 0.466215I
a = 0.95838 1.34005I
b = 0.572924 + 0.727360I
6.38447 + 0.32683I 3.51715 0.79678I
u = 1.52723 + 0.33642I
a = 1.97469 + 0.88742I
b = 3.60061 0.27568I
9.0434 + 14.6216I 0
u = 1.52723 0.33642I
a = 1.97469 0.88742I
b = 3.60061 + 0.27568I
9.0434 14.6216I 0
u = 1.53962 + 0.32307I
a = 1.85586 + 0.99438I
b = 3.59315 0.63275I
13.4023 9.9407I 0
u = 1.53962 0.32307I
a = 1.85586 0.99438I
b = 3.59315 + 0.63275I
13.4023 + 9.9407I 0
u = 1.54894 + 0.30323I
a = 1.67927 + 1.07256I
b = 3.42720 1.03218I
9.85027 + 5.15212I 0
u = 1.54894 0.30323I
a = 1.67927 1.07256I
b = 3.42720 + 1.03218I
9.85027 5.15212I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.57332 + 0.22114I
a = 2.12554 0.50767I
b = 3.82426 0.00661I
11.13740 + 8.11094I 0
u = 1.57332 0.22114I
a = 2.12554 + 0.50767I
b = 3.82426 + 0.00661I
11.13740 8.11094I 0
u = 1.58534 + 0.20019I
a = 2.05798 0.63877I
b = 3.85771 + 0.41371I
15.3567 3.3643I 0
u = 1.58534 0.20019I
a = 2.05798 + 0.63877I
b = 3.85771 0.41371I
15.3567 + 3.3643I 0
u = 1.59138 + 0.17411I
a = 1.93614 0.75434I
b = 3.71746 + 0.86616I
11.62880 1.45194I 0
u = 1.59138 0.17411I
a = 1.93614 + 0.75434I
b = 3.71746 0.86616I
11.62880 + 1.45194I 0
u = 0.121685 + 0.105182I
a = 6.95371 + 3.79591I
b = 1.189100 0.168206I
1.63772 4.11971I 0.12488 + 3.37346I
u = 0.121685 0.105182I
a = 6.95371 3.79591I
b = 1.189100 + 0.168206I
1.63772 + 4.11971I 0.12488 3.37346I
u = 0.106744
a = 11.6080
b = 1.16523
2.32826 4.47140
9
II. I
u
2
= h−u
5
+ u
3
+ b u, u
3
+ a, u
18
6u
16
+ · · · u 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
u
3
u
5
u
3
+ u
a
9
=
1
u
2
a
10
=
u
6
+ u
4
+ 1
u
8
2u
6
+ 2u
4
2u
2
a
5
=
u
9
2u
7
+ u
5
2u
3
+ u
u
11
+ 3u
9
4u
7
+ 5u
5
3u
3
+ u
a
3
=
u
u
a
2
=
u
3
u
3
+ u
a
12
=
u
u
a
7
=
u
2
+ 1
u
2
a
6
=
u
4
u
2
+ 1
u
4
a
11
=
u
16
5u
14
+ 11u
12
16u
10
+ 17u
8
14u
6
+ 8u
4
2u
2
+ 1
u
16
+ 4u
14
6u
12
+ 6u
10
4u
8
+ 2u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
+ 12u
7
12u
5
+ 12u
3
8u + 10
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 12u
17
+ ··· + 5u + 1
c
2
, c
6
, c
7
c
8
, c
12
u
18
6u
16
+ ··· + u 1
c
3
, c
4
, c
9
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
3
c
5
, c
10
, c
11
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
3
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
12y
17
+ ··· + 7y + 1
c
2
, c
6
, c
7
c
8
, c
12
y
18
12y
17
+ ··· 5y + 1
c
3
, c
4
, c
9
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
3
c
5
, c
10
, c
11
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.672231 + 0.755934I
a = 0.848635 0.592839I
b = 1.019800 0.770263I
3.69558 4.59213I 8.58114 + 3.20482I
u = 0.672231 0.755934I
a = 0.848635 + 0.592839I
b = 1.019800 + 0.770263I
3.69558 + 4.59213I 8.58114 3.20482I
u = 0.945797 + 0.372369I
a = 0.452617 0.947657I
b = 0.167799 + 0.459832I
2.96024 1.97241I 4.57572 + 3.68478I
u = 0.945797 0.372369I
a = 0.452617 + 0.947657I
b = 0.167799 0.459832I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.719335 + 0.743187I
a = 0.819709 0.743187I
b = 0.773023 0.902358I
7.66009 12.26950 + 0.I
u = 0.719335 0.743187I
a = 0.819709 + 0.743187I
b = 0.773023 + 0.902358I
7.66009 12.26950 + 0.I
u = 0.763761 + 0.724480I
a = 0.757105 0.887576I
b = 0.494362 0.949066I
3.69558 + 4.59213I 8.58114 3.20482I
u = 0.763761 0.724480I
a = 0.757105 + 0.887576I
b = 0.494362 + 0.949066I
3.69558 4.59213I 8.58114 + 3.20482I
u = 1.18645
a = 1.67012
b = 1.86730
0.738851 13.4170
u = 1.219960 + 0.167385I
a = 1.71314 0.74267I
b = 1.70520 + 1.20889I
2.96024 1.97241I 4.57572 + 3.68478I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.219960 0.167385I
a = 1.71314 + 0.74267I
b = 1.70520 1.20889I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.593225 + 0.236109I
a = 0.109553 0.236109I
b = 0.449977 + 0.100617I
0.738851 13.41678 + 0.I
u = 0.593225 0.236109I
a = 0.109553 + 0.236109I
b = 0.449977 0.100617I
0.738851 13.41678 + 0.I
u = 0.274166 + 0.539754I
a = 0.219014 + 0.035534I
b = 0.551041 + 0.518149I
2.96024 + 1.97241I 4.57572 3.68478I
u = 0.274166 0.539754I
a = 0.219014 0.035534I
b = 0.551041 0.518149I
2.96024 1.97241I 4.57572 + 3.68478I
u = 1.43599 + 0.03145I
a = 2.95686 0.19455I
b = 4.55589 + 0.50499I
3.69558 + 4.59213I 8.58114 3.20482I
u = 1.43599 0.03145I
a = 2.95686 + 0.19455I
b = 4.55589 0.50499I
3.69558 4.59213I 8.58114 + 3.20482I
u = 1.43867
a = 2.97771
b = 4.62413
7.66009 12.2690
14
III. I
u
3
= hb + 1, a
4
4a
3
+ 3a
2
+ 2a + 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
8
=
1
0
a
4
=
a
1
a
9
=
1
1
a
10
=
a
2
+ a + 1
a 2
a
5
=
a
3
+ 2a
2
+ a 1
a
2
3a + 1
a
3
=
1
a 2
a
2
=
1
a 3
a
12
=
1
1
a
7
=
0
1
a
6
=
1
a 2
a
11
=
a
3
4a
2
+ 3a + 1
a
3
+ 5a
2
5a 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
+ 8a + 8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
4
c
3
, c
4
, c
9
u
4
3u
2
+ 3
c
5
, c
10
, c
11
u
4
+ 3u
2
+ 3
c
6
, c
7
, c
8
(u + 1)
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
4
c
3
, c
4
, c
9
(y
2
3y + 3)
2
c
5
, c
10
, c
11
(y
2
+ 3y + 3)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.271230 + 0.340625I
b = 1.00000
4.05977I 6.00000 + 3.46410I
u = 1.00000
a = 0.271230 0.340625I
b = 1.00000
4.05977I 6.00000 3.46410I
u = 1.00000
a = 2.27123 + 0.34063I
b = 1.00000
4.05977I 6.00000 3.46410I
u = 1.00000
a = 2.27123 0.34063I
b = 1.00000
4.05977I 6.00000 + 3.46410I
18
IV. I
u
4
= hb 1, a
4
+ 4a
3
+ 5a
2
+ 2a 1, u 1i
(i) Arc colorings
a
1
=
0
1
a
8
=
1
0
a
4
=
a
1
a
9
=
1
1
a
10
=
a
2
a + 1
a 2
a
5
=
a
3
2a
2
+ a + 1
a
2
3a 1
a
3
=
1
a + 2
a
2
=
1
a + 3
a
12
=
1
1
a
7
=
0
1
a
6
=
1
a 2
a
11
=
a
3
4a
2
3a + 1
a
3
+ 3a
2
+ a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
+ 8a + 8
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
8
(u 1)
4
c
2
, c
12
(u + 1)
4
c
3
, c
4
, c
9
u
4
u
2
1
c
5
, c
10
, c
11
u
4
+ u
2
1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
4
c
3
, c
4
, c
9
(y
2
y 1)
2
c
5
, c
10
, c
11
(y
2
+ y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.000000 + 0.786151I
b = 1.00000
3.94784 1.52786 + 0.I
u = 1.00000
a = 1.000000 0.786151I
b = 1.00000
3.94784 1.52786 + 0.I
u = 1.00000
a = 0.272020
b = 1.00000
3.94784 10.4720
u = 1.00000
a = 2.27202
b = 1.00000
3.94784 10.4720
22
V. I
u
5
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
8
=
1
0
a
4
=
1
1
a
9
=
1
1
a
10
=
1
1
a
5
=
1
1
a
3
=
1
1
a
2
=
1
2
a
12
=
1
1
a
7
=
0
1
a
6
=
1
1
a
11
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
7
, c
8
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
18
+ 12u
17
+ ··· + 5u + 1)(u
49
+ 16u
48
+ ··· + 51u + 1)
c
2
((u 1)
5
)(u + 1)
4
(u
18
6u
16
+ ··· + u 1)(u
49
2u
48
+ ··· + 3u 1)
c
3
, c
4
, c
9
u(u
4
3u
2
+ 3)(u
4
u
2
1)(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
3
· (u
49
+ 2u
48
+ ··· 24u + 16)
c
5
, c
10
, c
11
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
3
· (u
49
2u
48
+ ··· 2u + 2)
c
6
((u 1)
4
)(u + 1)
5
(u
18
6u
16
+ ··· + u 1)(u
49
2u
48
+ ··· + 3u 1)
c
7
, c
8
((u 1)
4
)(u + 1)
5
(u
18
6u
16
+ ··· + u 1)(u
49
+ 2u
48
+ ··· u 1)
c
12
((u 1)
5
)(u + 1)
4
(u
18
6u
16
+ ··· + u 1)(u
49
+ 2u
48
+ ··· u 1)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
18
12y
17
+ ··· + 7y + 1)(y
49
+ 44y
48
+ ··· + 1819y 1)
c
2
, c
6
((y 1)
9
)(y
18
12y
17
+ ··· 5y + 1)(y
49
16y
48
+ ··· + 51y 1)
c
3
, c
4
, c
9
y(y
2
3y + 3)
2
(y
2
y 1)
2
· (y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
3
· (y
49
50y
48
+ ··· 8256y 256)
c
5
, c
10
, c
11
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
3
· (y
49
+ 38y
48
+ ··· + 8y 4)
c
7
, c
8
, c
12
((y 1)
9
)(y
18
12y
17
+ ··· 5y + 1)(y
49
56y
48
+ ··· + 99y 1)
28